Skip to main content
Log in

Directional scattering by the hyperbolic-medium antennas and silicon particles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Optical antennas made out of materials with hyperbolic dispersion is an alternative approach to realizing efficient subwavelength scatterers and may overcome limitations imposed by plasmonic and all-dielectric designs. Recently emerged natural hyperbolic material hexagonal boron nitride supports phonon-polariton excitations with low optical losses and high anisotropy. Here we study scattering properties of the hyperbolic-medium (HM) antennas, and in particular, we consider a combination of two types of the particles - HM bars and silicon spheres - arranged in a periodic array. We analyze excitation of electric and magnetic resonances in the particles and effect of their overlap in the array. We theoretically demonstrate that decrease of reflectance from the array can be achieved with appropriate particle dimensions where electric and magnetic resonances of different particle types overlap, and the resonance oscillations are in phase. In this case, generalized Kerker condition is satisfied, and particle dimers in the array efficiently scatter light in the forward direction. The effect can be used in designing metasurfaces based on hexagonal boron nitride scatterers with an application in mid-infrared photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Principles of Nano-Optics, L. Novotny, B. Hecht, Cambridge University Press, 2012

  2. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  3. V.E. Babicheva, S.S. Vergeles, P.E. Vorobev, S. Burger, JOSA B 29, 1263–1269 (2012).

    Article  CAS  Google Scholar 

  4. H. A. Atwater, A. Polman, Nature Mater. 9, 205–213 (2010).

  5. A. Boulesbaa, V.E. Babicheva, K. Wang I.I. Kravchenko, M.-W. Lin, M. Mahjouri-Samani, C. Jacob, A.A. Puretzky, K. Xiao, I. Ivanov, C.M. Rouleau, D.B. Geohegan, ACS Photonics 3, 2389 (2016).

    Article  CAS  Google Scholar 

  6. V.E. Babicheva, R.Sh. Ikhsanov, S.V. Zhukovsky, I.E. Protsenko, I.V Smetanin, and A.V. Uskov, ACS Photonics 2, 1039–1048 (2015).

  7. V.E. Babicheva, S. Gamage, M.I. Stockman, and Y. Abate, Optics Express 25, 23935–23944 (2017).

  8. V.E. Babicheva, “Surface and edge resonances of phonon-polaritons in scattering near-field optical microscopy” arxiv.org/abs/1709.06274

  9. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, Opt. Express 20, 20599– 20604 (2012).

  10. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, aag2472 (2016).

  11. I. Staude and J. Schilling, Nature Photonics 11, 274–284 (2017).

  12. K.V. Baryshnikova, M.I. Petrov, V.E. Babicheva, P.A. Belov, Scientific Reports 6, 22136 (2016).

    Article  CAS  Google Scholar 

  13. V. Babicheva, M. Petrov, K. Baryshnikova, P. Belov, Journal of the Optical Society of America B 34 (7), D18–D28 (2017).

  14. V.E. Babicheva, “Multipole resonances and directional scattering by hyperbolic-media antennas,” arxiv.org/abs/1706.07259

  15. V. P. Drachev, V. A. Podolskiy, and A. V. Kildishev, Opt. Express 21(12), 15048–15064 (2013).

    Article  Google Scholar 

  16. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photonics 7(12), 948–957 (2013).

    Article  CAS  Google Scholar 

  17. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336(6078), 205–209 (2012).

    Article  CAS  Google Scholar 

  18. S.V. Zhukovsky, A.A. Orlov, V.E. Babicheva, A.V Lavrinenko, J.E. Sipe, Physical Review A 90, 013801 (2014).

    Article  Google Scholar 

  19. C. Simovski, S. Maslovski, I. Nefedov, S. Tretyakov, Opt. Express 21, 14988 (2013).

    Article  Google Scholar 

  20. A.A. Orlov, A.K. Krylova, S.V. Zhukovsky, V.E. Babicheva, P.A. Belov, Phys. Rev. A 90, 013812 (2014).

    Article  Google Scholar 

  21. A.A. Orlov, E.A. Yankovskaya, S.V. Zhukovsky, V.E. Babicheva, I.V Iorsh, P.A. Belov, Crystals 4, 417–426(2014).

  22. A.V. Chebykin, V.E. Babicheva, I.V. Iorsh, AA Orlov, P.A. Belov, S.V. Zhukovsky, Physical Review A 93, 033855 (2016).

    Article  Google Scholar 

  23. V. E. Babicheva, M. Y. Shalaginov, S. Ishii, A. Boltasseva, and A. V. Kildishev, Opt. Express 23(8), 9681–9689 (2015).

    Article  CAS  Google Scholar 

  24. S. Ishii, M. Y. Shalaginov, V. E. Babicheva, A. Boltasseva, and A. V. Kildishev, Opt. Lett. 39(16), 4663–4666 (2014).

    Article  Google Scholar 

  25. V.E. Babicheva, Journal of Optics 19, 124013 (2017).

    Article  Google Scholar 

  26. V.E. Babicheva, M.Y. Shalaginov, S. Ishii, A. Boltasseva, and A.V. Kildishev, Opt. Express 23, 31109–31119(2015).

  27. P.R. West, N. Kinsey, M. Ferrera, A.V. Kildishev, V.M. Shalaev, and A. Boltasseva, Nano Lett. 15(1), 498–505 (2015).

    Article  CAS  Google Scholar 

  28. B. Auguié and W.L. Barnes, Phys. Rev. Lett. 10, 143902 (2008).

    Article  Google Scholar 

  29. A.B. Evlyukhin, C. Reinhardt, U. Zywietz, B. Chichkov, Phys. Rev. B 85(24), 245411 (2012).

  30. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Plasmonics 9, 283 (2014).

    Article  CAS  Google Scholar 

  31. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Appl. Phys. A 116, 929 (2014).

    Article  CAS  Google Scholar 

  32. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk B. N. Chichkov, Phys. Rev. B 82(4), 045404(2010).

  33. V.E. Babicheva andA.B. Evlyukhin, Laser & Photonics Reviews 11, 1700132 (2017).

    Article  Google Scholar 

  34. M. Kerker, D. Wang C. Giles, J. Opt. Soc. Am. 73, 765 (1983).

    Article  Google Scholar 

  35. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  36. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, L. Novotny, Nano Lett. 13(4), 1806–1809 (2013).

    Article  CAS  Google Scholar 

  37. A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, Opt. Express 23, 28808–28828 (2015).

  38. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, Opt. Lett. 40, 2645–2648 (2015).

  39. Y. Cai, L. Zhang, Q. Zeng, L. Cheng, Y. Xu, Solid State Communications 141, 262–266 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Babicheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babicheva, V.E. Directional scattering by the hyperbolic-medium antennas and silicon particles. MRS Advances 3, 1913–1917 (2018). https://doi.org/10.1557/adv.2018.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.112

Navigation