Skip to main content

Advertisement

Log in

Facile Synthesis of Water-Soluble Graphene Quantum Dots/Graphene for Efficient Photodetector

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene quantum dots (GQDs) are zero-dimensional material with characteristics derived from functionalized graphene precursors are graphene sheets a few nanometers in the lateral dimension having a several-layer thickness. Combining the structure of graphene with the quantum confinement and edge effects, GQDs possess unique chemical behavior and physical properties. Intense research activity in GQDs is attributed to their novel phenomena of charge transport and light absorption and photoluminescence excitation. The optical transitions are known to be available up to 6 eV in GQDs, applicable for ultraviolet photonics and optoelectronics devices, biomedical imaging capabilities and technologies. We present facile hydrothermal and solvothermal methods for synthesizing homogenous dispersed and uniform sized GQDs with a strong greenish and violet blue emission peaks at ∼10-14% yield. This approach enabled a large-scale production of aqueous GQD dispersions without the need for chemical stabilizers. The structure and emission mechanism of the GQDs have been studied by combining extensive characterization techniques and rigorous control experiments. We further demonstrate the distinctive advantages of such GQDs as high-performance photodetectors (PDs). Here we also report high-efficient photocurrent (PC) behaviors consisting of multilayer GQDs sandwiched between monolayer graphene sheets. It is conceivable that the observed unique PD characteristics proved to be dominated by tunneling of charge carriers which occurs through the multiple energy states within the bandgap of GQDs, based on bias-dependent variation of the band profiles. This results in novel dark current and PC behaviors. The external quantum efficiency (η) is predicted to be 47% at applied potential 2 V. These findings highlight rich photophysics and comparable performance of graphene/graphene oxide hybrids opening up potential applications as optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Geim and K. Novoselov, Nature Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  2. S. Gupta and S. B. Carrizosa, J. Electron. Materials 44, 4492 (2015).

    Article  CAS  Google Scholar 

  3. S. Gupta, M. vanMeveren and J. Jasinski, Int. J. Electrochem. Sci. 10, 10272 (2015).

    CAS  Google Scholar 

  4. S. Bai, K. Zhang, L. Wang, J. Sun, R. Luo, D. Li and A. Chen, J. Mater. Chem. A 2, 7927 (2014).

    Article  CAS  Google Scholar 

  5. G. Wang L. Zhang and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  6. A. Geim and K. S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  7. R. Raccichini, A. Varzi, S. Passerini and B. Scrosati, Nat. Mater. 14, 271 (2015).

    Article  CAS  Google Scholar 

  8. Q. Zhang, J. Jie, S. Diao, Z. Shao, Q. Zhang, L. Wang, W. Deng, W. Hu, H. Xia, X. Yuan and S.-T. Lee, ACS Nano 9, 1561 (2015).

    Article  CAS  Google Scholar 

  9. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. Pelayo G. de Arquer, F. Gatti and F. H. L. Koppens, Nat. Nanotechnol. 7, 363 (2012).

    Article  CAS  Google Scholar 

  10. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, Adv. Mater. 23, 776 (2011).

    Article  Google Scholar 

  11. X. Yan, X. Cui and L. S. Li, J. Am. Chem. Soc. 132, 5944 (2010).

    Article  CAS  Google Scholar 

  12. G. Konstantatos and E. H. Sargent, Nat. Nanotechnol. 5, 391 (2010).

    Article  CAS  Google Scholar 

  13. Y. Sun, S. Wang, C. Li, P. Luo, L. Tao, Y. Wei and G. Shi, Phys. Chem. Chem. Phys. 15, 9907 (2013).

    Article  CAS  Google Scholar 

  14. L. E. Brus, Appl. Phys. 53, 465 (1991).

    Article  Google Scholar 

  15. A. L. Efros and M. Rosen, Ann. Rev. Mater. Sci. 30, 475 (2000).

    Article  CAS  Google Scholar 

  16. C. O. Kim, S. W. Hwang, S. Kim, D. H. Shin, S. S. Kang, J. M. Kim, C. W. Jang, J. H. Kim, K. W. Lee, S.-H. Choi and E. Hwang, Sci. Rep. 4: 5603 (2014).

    Article  CAS  Google Scholar 

  17. K. Byrappa, M. Yoshimura, in Handbook of Hydrothermal Technology (Noyes Publications, New Jersey, USA, 2001).

  18. R. Roy, J. Sol. Stat. Chem. 111, s11–17 (1994).

    Article  Google Scholar 

  19. G. Eda and M. Chowalla, Adv. Mater. 22, 2392 (2010).

    Article  CAS  Google Scholar 

  20. D. Pan, J. Zhang, Z. Li and M. Wu, Adv. Mater. 22, 734 (2010).

    Article  Google Scholar 

  21. S. Gupta, T. Smith, A. Banaszak and J. Boeckl, Nanomaterials 7, 301 (2017).

    Article  Google Scholar 

  22. C. Xiong, A.E. Aliev, B. Gnade and K.J. Balkus Jr. ACS Nano 2, 293 (2008).

    Article  CAS  Google Scholar 

  23. E. H. Lee, M. B. Lewis, P. J. Blau, and L. K. Mansur, J. Mater. Res. 6, 610 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanju Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Walden, J., Banaszak, A. et al. Facile Synthesis of Water-Soluble Graphene Quantum Dots/Graphene for Efficient Photodetector. MRS Advances 3, 817–824 (2018). https://doi.org/10.1557/adv.2018.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.14

Navigation