Skip to main content
Log in

Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Large-area graphene of the order of centimeters was deposited on copper substrates by low-pressure chemical vapor deposition (LPCVD) using hexane as the carbon source. The effect of temperature and the carrier gas flowrates on the quality and uniformity of the as-deposited graphene was investigated using the Raman analysis. The film deposited at 870 °C with a total carrier gas flowrate of 50 sccm is predominantly single-layer with very low defects according to the Raman spectra. The 2D/G peak intensity ratios obtained from the Raman spectra of samples from three different locations of graphene deposited on a whole copper catalyst was used to calculate the large-area uniformity. Based on the results, a very high uniformity of 89.6% was calculated for the graphene deposited at 870 °C. The uniformity was observed to decrease with increasing temperature. Similar to the thickness uniformity, the electrical conductivity values obtained as a result of I–V measurements and water contact angle measurements were found to be close to each other for the graphene deposited under the same deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2010) The rise of graphene. Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 11–19

    Google Scholar 

  2. Dong L-X, Chen Q (2010) Properties, synthesis, and characterization of graphene. Front Mater Sci Chin 4(1):45–51

    Article  Google Scholar 

  3. Ramli N, Fahsyar P, Ludin N, Teridi M, Ibrahim M, Sepeai S (2021) Graphene dispersion as a passivation layer for the enhancement of perovskite solar cell stability. Mater Chem Phys 257:123798

    Article  CAS  Google Scholar 

  4. Ahamed MI, Shakeel N, Anwar N, Khan A, Asiri AM, Dzudzevic-Cancar H (2021) Graphene-based nanocomposite for hydrogen storage application. Nanomaterials for hydrogen storage applications. Elsevier, Amsterdam, pp 57–78

    Chapter  Google Scholar 

  5. Fallahazad P, Naderi N, Eshraghi MJ (2020) Improved photovoltaic performance of graphene-based solar cells on textured silicon substrate. J Alloys Compd 834:155123

    Article  CAS  Google Scholar 

  6. Singh J, Rathi A, Rawat M, Gupta M (2018) Graphene: from synthesis to engineering to biosensor applications. Front Mater Sci 12(1):1–20

    Article  Google Scholar 

  7. Gao J, Wang Y, Han Y, Gao Y, Wang C, Han L, Zhang Y (2020) Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. J Mater Sci: Mater Electron 31(18):15372–15380

    CAS  Google Scholar 

  8. Park CS, Yoon H, Kwon OS (2016) Graphene-based nanoelectronic biosensors. J Ind Eng Chem 38:13–22

    Article  CAS  Google Scholar 

  9. Lopez-Medina M, Hernandez-Navarro F, Mtz-Enriquez A, Oliva A, Rodriguez-Gonzalez V, Camarillo-Garcia J, Aguilar-Ortiz C, Flores-Zuñiga H, Oliva J (2020) Enhancing the capacity and discharge times of flexible graphene batteries by decorating their anodes with magnetic alloys NiMnMx (Mx= Ga, In, Sn). Mater Chem Phys 256:123660

    Article  CAS  Google Scholar 

  10. Mathew EE, Balachandran M (2021) Crumpled and porous graphene for supercapacitor applications: a short review. Carbon Lett 31:1–19

    Article  Google Scholar 

  11. Yan Y, Shin WI, Chen H, Lee S-M, Manickam S, Hanson S, Zhao H, Lester E, Wu T, Pang CH (2021) A recent trend: application of graphene in catalysis. Carbon Lett 31(2):177–199

    Article  Google Scholar 

  12. Tyurnina AV, Tzanakis I, Morton J, Mi J, Porfyrakis K, Maciejewska BM, Grobert N, Eskin DG (2020) Ultrasonic exfoliation of graphene in water: a key parameter study. Carbon 168:737–747

    Article  CAS  Google Scholar 

  13. Gao E, Lin S-Z, Qin Z, Buehler MJ, Feng X-Q, Xu Z (2018) Mechanical exfoliation of two-dimensional materials. J Mech Phys Solids 115:248–262

    Article  Google Scholar 

  14. Şakalak H, Yılmaz K, Gürsoy M, Karaman M (2020) Roll-to roll ınitiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates. Chem Eng Sci 215:115466

    Article  Google Scholar 

  15. Yılmaz K, Hs Ş, Gürsoy M, Karaman M (2019) Initiated chemical vapor deposition of poly (ethylhexyl acrylate) films in a large-scale batch reactor. Ind Eng Chem Res 58(32):14795–14801

    Article  Google Scholar 

  16. Cheng C, Gupta M (2018) Roll-to-roll surface modification of cellulose paper via initiated chemical vapor deposition. Ind Eng Chem Res 57(34):11675–11680

    Article  CAS  Google Scholar 

  17. Chandrashekar BN, Deng B, Smitha AS, Chen Y, Tan C, Zhang H, Peng H, Liu Z (2015) Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv Mater 27(35):5210–5216

    Article  CAS  Google Scholar 

  18. Alrefae MA, Kumar A, Pandita P, Candadai A, Bilionis I, Fisher TS (2017) Process optimization of graphene growth in a roll-to-roll plasma CVD system. AIP Adv 7(11):115102

    Article  Google Scholar 

  19. Naghdi S, Rhee KY, Park SJ (2018) A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: low temperature growth. Carbon 127:1–12

    Article  CAS  Google Scholar 

  20. Yamada T, Ishihara M, Hasegawa M (2013) Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 532:89–93

    Article  CAS  Google Scholar 

  21. Saeed M, Hamed A, Wang Z, Shaygan M, Neumaier D, Negra R (2018) Graphene integrated circuits: new prospects towards receiver realisation. Nanoscale 10(1):93–99

    Article  CAS  Google Scholar 

  22. Chae M-S, Lee TH, Son KR, Kim YW, Hwang KS, Kim TG (2019) Electrically-doped CVD-graphene transparent electrodes: application in 365 nm light-emitting diodes. Nanoscale Horizons 4(3):610–618

    Article  CAS  Google Scholar 

  23. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Article  CAS  Google Scholar 

  24. Kim Y, Song W, Lee S, Jeon C, Jung W, Kim M, Park C-Y (2011) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl phys lett 98(26):263106

    Article  CAS  Google Scholar 

  25. Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B (2013) High quality graphene synthesized by atmospheric pressure CVD on copper foil. Surf Coat Technol 230:87–92

    Article  CAS  Google Scholar 

  26. Kashyap PK, Sharma I, Gupta BK (2019) Continuous growth of highly reproducible single-layer graphene deposition on Cu foil by indigenously developed LPCVD setup. ACS Omega 4(2):2893–2901

    Article  CAS  Google Scholar 

  27. Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10(10):4128–4133

    Article  CAS  Google Scholar 

  28. Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133(9):2816–2819

    Article  CAS  Google Scholar 

  29. Fang W, Hsu AL, Song Y, Birdwell AG, Amani M, Dubey M, Dresselhaus MS, Palacios T, Kong J (2014) Asymmetric growth of bilayer graphene on copper enclosures using low-pressure chemical vapor deposition. ACS Nano 8(6):6491–6499

    Article  CAS  Google Scholar 

  30. Sun J, Lindvall N, Cole MT, Angel KT, Wang T, Teo KB, Chua DH, Liu J, Yurgens A (2011) Low partial pressure chemical vapor deposition of graphene on copper. IEEE Trans Nanotechnol 11(2):255–260

    Article  Google Scholar 

  31. Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58–67

    Article  CAS  Google Scholar 

  32. Liu L, Zhou H, Cheng R, Chen Y, Lin Y-C, Qu Y, Bai J, Ivanov IA, Liu G, Huang Y (2012) A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. J Mater Chem 22(4):1498–1503

    Article  CAS  Google Scholar 

  33. Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K-i, Mizuno S (2012) Epitaxial growth of large-area single-layer graphene over Cu (1 1 1)/sapphire by atmospheric pressure CVD. Carbon 50(1):57–65

    Article  CAS  Google Scholar 

  34. Chen X, Zhang L, Chen S (2015) Large area CVD growth of graphene. Synth Met 210:95–108

    Article  CAS  Google Scholar 

  35. Çıtak E, İstanbullu B, Şakalak H, Gürsoy M, Karaman M (2019) All-dry hydrophobic functionalization of paper surfaces for efficient transfer of CVD graphene. Macromol Chem Phys 220(22):1900277

    Article  Google Scholar 

  36. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401

    Article  CAS  Google Scholar 

  37. Belyaeva LA, Tang C, Juurlink L, Schneider GF (2021) Macroscopic and microscopic wettability of graphene. Langmuir 37:4049

    Article  CAS  Google Scholar 

  38. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11(3):217–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with a grant number of 118M041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Karaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürsoy, M., Çıtak, E. & Karaman, M. Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique. Carbon Lett. 32, 781–787 (2022). https://doi.org/10.1007/s42823-021-00309-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00309-3

Keywords

Navigation