Skip to main content
Log in

What could be the Highest Hopping Mobility in Organic Thin-Film Transistors?

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Charge transport properties of pentacene have been investigated by a joint experimental and theoretical study. The growth of pentacene on the substrates shows mainly two different polymorphic phases, a bulk phase and a thin-film phase. The thin-film phase is crucial for the charge transport in two-terminal and three-terminal devices such as organic Schottky diodes and organic thin film transistors, respectively. Experimentally, mobility in two-terminal devices is less by five orders of magnitude than that in three-terminal devices. We show here that this difference can be explained on the basis of strong electronic coupling between molecular dimers located in the ab-plane and relatively weak coupling between the planes (along the c-axis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  CAS  Google Scholar 

  2. R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, and M. Nakamura, Appl. Phys. Lett. 92, 242108 (2008).

    Article  Google Scholar 

  3. P. M. Beaujuge and J. M. J. Frechet J. Am. Chem. Soc. 133, 20009 (2011).

    Article  CAS  Google Scholar 

  4. M. Mas-Torrent, C. Rovira, Chem. Rev. 111, 4833 (2011).

    Article  CAS  Google Scholar 

  5. C. Tanase, E. J. Meijer, P. W. M. Blom, and D.M. de Leeuw, Phys. Rev. Lett. 91, 216601 (2003).

    Article  CAS  Google Scholar 

  6. S. Zorba, Y. Shapir, and Y. Gao, Phys. Rev. B 74, 245410 (2006).

    Article  Google Scholar 

  7. N. F. Mott and R. W. Gurney, “Electronic Processes in Ionic Crystals (Oxford University Press, Oxford, 1940)”.

    Google Scholar 

  8. W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, and P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev. Lett. 94, 206601 (2005).

    Article  CAS  Google Scholar 

  9. S. M. Sze, Physics of Semiconductor Devices, 2nd ed.; Wiley, New York, 1981.

    Google Scholar 

  10. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).

    Article  CAS  Google Scholar 

  11. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1988).

    Google Scholar 

  12. M. J. Frisch et al. Gaussian 09, Revision C01. (Gaussian, Inc., 2009).

  13. Choongkeun Lee, Karl Sohlberg, Chem. Phys. 367, 9 (2010).

    Article  Google Scholar 

  14. E.F. Valeev, V. Coropceanu, D.A. da Silva Filho, S. Salman, J.-L. Brédas, J. Am. Chem. Soc. 128, 9882 (2006).

    Article  CAS  Google Scholar 

  15. V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer and D. Andrienko, J. Chem. Theory Comput., 5, 3211 (2009).

    Article  Google Scholar 

  16. V. Coropceanu, J. Cornil, D. A. da S. Filho, Y. Olivier, R. Silbey and J. L. Bredas, Chem. Rev. 107, 926 (2007).

    Article  CAS  Google Scholar 

  17. L.H. Jimison, M. F. Toney, I. McCulloch, M. Heeney, A. Salleo, Adv. Mater. 21, 1568 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, V., Sharma, A. & Ghosh, S. What could be the Highest Hopping Mobility in Organic Thin-Film Transistors?. MRS Advances 1, 2659–2664 (2016). https://doi.org/10.1557/adv.2016.477

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.477

Navigation