Skip to main content
Log in

The Effect of Buffer Layer on CNT Structure and CNT/Copper Interfacial Properties

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), with exceptional thermal and mechanical properties as well as inherently high surface area, are an attractive candidate for integrating into thermal structures of advanced power electronics. Growth of vertically aligned carbon nanotubes (VACNTs) directly onto copper (Cu) substrates is a promising approach to apply CNTs as novel thermal interface materials (TIMs) in electronics packaging. However, compared to growing CNTs on conventional inert substrates such as SiO2, direct growth of controllable CNT arrays onto Cu substrates is significantly more challenging due to the diffusion of metallic catalyst into the substrate during growth. By depositing an appropriate buffer layer on the Cu substrate surface, VACNTs of good alignment and high quality were reproducibly synthesized on the Cu substrate via the chemical vapor deposition (CVD) method in this study. The effect of different buffer layers on the CNT growth, nanotube structure and quality was investigated (SEM, Raman), particularly in terms of the interfacial properties between the CNT array and Cu substrate (Tensile compression force tester, Laser Flash Analysis). Our experimental results indicated that the buffer layer material, deposition method, and thickness play a key role in regulating the CNT layer growth/structure, leading to variable mechanical and thermal properties. The fundamental understanding thus obtained allows the successful synthesis of VACNT on copper substrates with desired structure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teresa de los Arcos, M.G. Garnier, Carbon (42), 187–190, 2004.

    Article  CAS  Google Scholar 

  2. A. J. Hart, A. H. Slocum, Laure Royer, Carbon (44), 348–359, 2006.

    Article  CAS  Google Scholar 

  3. S. Handuja, P. Srivastava, and V.D. Vankar, Nanoscale Res Lett (5), 1211–1216, 2010.

    Article  CAS  Google Scholar 

  4. A. Cao, P.M. Ajayan, G. Ramanath, Applied Physics Letters (84), 109–111, 2004.

    Article  CAS  Google Scholar 

  5. J. M. Simmons, B. M. Nichols, M. S. Marcus, O. M. Castellini, R. J. Hamers, and M. A. Eriksson, Small, vol. 2, no. 7, 902–909, 2006.

    Article  CAS  Google Scholar 

  6. S. P. Patolea, J. H. Jeonga, S. M. Yub, H. J. Kimc, J. H. Hand, I.T. Hanc, J. B.Yoo, Applied Surface Science (271), 32– 38, 2013.

    Article  Google Scholar 

  7. W.H. Wang, Y.R. Peng, C.T. Kuo, Diamond & Related Materials (14) , 1906 – 1910, 2005.

    Article  CAS  Google Scholar 

  8. K. Sato, T. Shiraiwa, T. Maruyama, S. Naritsuka, J Nanosci Nanotechnol (6), 3929–33, 2010.

    Article  Google Scholar 

  9. T. Ohashi, R. Kato, T. Tokune, H. Kawarada, Carbon., vol. 57, 401–409, 2013.

    Article  CAS  Google Scholar 

  10. P. B. Amama, C. L. Pint, S. M. Kim, L. McJilton, K. G. Eyink, E. A. Stach, R, H. Hauge and B. Maruyama, ACS Nano (4), 895–904, 2010.

    Article  CAS  Google Scholar 

  11. H. Liu, Y. Zhang, D. Arato, R. Li, P. Merel, Surface & coating Technology (202), 4114–4120, 2008.

    Article  CAS  Google Scholar 

  12. Q. Zhang, B. Quinton, B. Tsao, J. Scofield, J. Merrett, J. Lawson1, K. Yost, L. Elston, 2014 MRS Fall Meeting proceedings, 2014.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Elston, L., Scofield, J. et al. The Effect of Buffer Layer on CNT Structure and CNT/Copper Interfacial Properties. MRS Advances 1, 1447–1452 (2016). https://doi.org/10.1557/adv.2016.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.201

Navigation