Skip to main content

Advertisement

Log in

Room Temperature Synthesis of Highly Magnetic Cobalt Nanoparticles by Continuous Flow in a Microfluidic Reactor

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Cobalt nanoparticles were synthesized using continuous-flow (CF) chemistry in a stainless steel microreactor for the first time at high output based on the ethanol hydrazine alkaline system (EHAS) producing a yield as high as 1 g per hour [1, 2]. Continuous-flow (CF) synthetic chemistry provides uninterrupted product formation allowing for advantages including decreased preparation time, improved product quality, and greater efficiency. This successful synthetic framework in continuous-flow of magnetic Co nanoparticles indicates feasibility for scaled-up production. The average particle size by transmission electron microscopy (TEM) of the as-synthesized cobalt was 30±10 nm, average crystallite size by Scherrer analysis (fcc phase) was 15±2 nm, and the estimated magnetic core size was 6±1 nm. Elemental surface analysis (X-ray photoelectron spectroscopy [XPS]) indicates a thin CoO surface layer. Assynthesized cobalt nanoparticles possessed a saturation magnetization (Ms) of 125±1 emu/g and coercivity (Hc) of 120±5 Oe. The actual Ms is expected to be greater since the as-synthesized cobalt mass was not weight-corrected (nonmagnetic mass: reaction by-products, solvent, etc.). Our novel high-output, continuous-flow production (>1 g/hr) of highly magnetic cobalt nanoparticles opens an avenue toward industrial-scale production of several other single element magnetic nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, F.; Zheng, H.; Yang, Z.; Qian, Y. Mater. Lett. 2002, 56, 906.

    Article  CAS  Google Scholar 

  2. Gibson, C. P.; Putzer, K. J. Science 1995, 267, 1338.

    Article  CAS  Google Scholar 

  3. El-Gendy, A. A.; Ibrahim, E. M. M.; Khavrus, V. O.; Krupskaya, Y.; Hampel, S.; Leonhardt, A.; Büchner, B.; Klingeler, R. Carbon 2009, 47, 2821.

    Article  CAS  Google Scholar 

  4. Majewski, A. P.; Stahlschmidt, U.; Jérôme, V.; Freitag, R.; Müller, A. H. E.; Schmalz, H. Biomacromolecules 2013, 14, 3081.

    Article  CAS  Google Scholar 

  5. Li, Y.; Beija, M.; Laurent, S.; Elst, L. V.; Muller, R. N.; Duong, H. T. T.; Lowe, A. B.; Davis, T. P.; Boyer, C. Macromolecules 2012, 45, 4196.

    Article  CAS  Google Scholar 

  6. Osorio-Cantillo, C.; Santiago-Miranda, A. N.; Perales-Perez, O.; Yin, X. J. Appl. Phys. 2012, 111,07B324.

  7. Giesen, B.; Orthner, H. R.; Kowalik, A.; Roth, P. Chem. Eng. Sci. 2004, 59, 2201.

    Article  CAS  Google Scholar 

  8. LaLena, J. N.; Cleary, D. A.; Carpenter, E. E.; Dean, N. F. Inorganic Materials Synthesis and Fabrication; Wiley Interscience: Hoboken, NJ, 2008.

    Book  Google Scholar 

  9. McMullen, J. P.; Jensen K. F. Annu. Rev. Anal. Chem. 2010, 3, 19.

    Article  CAS  Google Scholar 

  10. Razzaq, T.; Glasnov, T.N.; Kappe, C. O. Eur. J. Org. Chem. 2009, 9, 1321.

    Article  Google Scholar 

  11. Hassan, A. A.; Sandre, O.; Cabuil, V. Angew. Chem., Int. Ed. 2010, 49, 6268.

    Article  Google Scholar 

  12. Marre, S.; Jensen, K. F. Chem. Soc. Rev. 2010, 39, 1183.

    Article  CAS  Google Scholar 

  13. Shalom, D.; Wootton, R. C. R.; Winkle, R. F.; Cottam, B. F.; Vilar, R.; deMello, A. J.; Wilde, C. P. Mater. Lett. 2007, 61, 1146.

    Article  CAS  Google Scholar 

  14. Weng, C. H.; Huang, C. C.; Yeh, C. S.; Lee, H. Y.; Lee, G. B. J. Micromech. Microeng. 2008, 18, 035019.

    Article  Google Scholar 

  15. Shestopalov, I; Tice, J. D.; Ismagilov, R. F. Lab Chip 2004, 4, 316.

    Article  CAS  Google Scholar 

  16. Chen, C. H.; Shah, R. K.; Abate, A. R. Weitz, D. A. Langmuir 2009, 25, 4320.

    Article  CAS  Google Scholar 

  17. Gross, E; Shu, X.-Z.; Alayoglu, S.; Bechtel, H. A. Martin, M. C. Toste, F. D.; Somorjai, G. A. J. Am. Chem. Soc. 2014, 136, 3624.

    Article  CAS  Google Scholar 

  18. Hassan, A. A.; Sandre, O.; Cabuil, V.; Tabeling P. Chem. Commun. 2008, 1783.

    Google Scholar 

  19. Hassan, A. A.; Sandre, O.; Neveu, S.; Cabuil, V. Angew. Chem., Int. Ed. 2009, 48, 2342.

    Article  Google Scholar 

  20. Bubendor, J. L.; Enyb, C. M.; Beaurepaire, E.; Panissod, P.; Bucher, J. P. Eur. Phys. J. B. 2000, 17, 635.

    Article  Google Scholar 

  21. De la Peña-O’Shea, V. A.; Moreira, I. P. R.; Roldán; A.; Illas, F. J. Chem. Phys. 2010, 133, 024701.

  22. Barr, T. L. J. Phys. Chem. 1978, 82, 1801.

    Article  CAS  Google Scholar 

  23. Crist, V. Handbook of Monochromatic XPS Spectra — The Elements and Native Oxides; XPS International Inc.: Mountain View, CA, 1999; vol. 1.

  24. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M; Gerson, A. R. St. C. J. Appl. Surf. Sci. 2011, 257, 2717.

    Article  CAS  Google Scholar 

  25. Yaacob, I. I.; Nunes, A. C.; Bose, A.; Shah, D. O. J. Colloid Interface Sci. 1994, 168, 289.

    Article  CAS  Google Scholar 

  26. Crangle, J. TheMagneticProperties of Solids; Edward Arnold: London, 1977.

    Google Scholar 

  27. Carpenter, E. E. J. Magn. Magn. Mater. 2001, 225, 17.

    Article  CAS  Google Scholar 

  28. El-Gendy, A. A.; Khavrus, V. O.; Hampel, S.; Leonhardt A.; Büchner, B.; Klingeler, R. J. Phys. Chem. C 2010, 114, 10745.

    Article  CAS  Google Scholar 

  29. Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, S. Pure Appl. Chem. 2006, 78, 1667.

    Article  CAS  Google Scholar 

  30. Deepak, S.; Chauhan, R.; Kumar, S. J. Mater. Sci. 2014, 25, 124.

    Google Scholar 

  31. Liu, T.; Zhou, P. H.; Xie, J. L.; Deng, L. J. J. Appl. Phys. 2011, 110, 033918.

    Article  Google Scholar 

  32. Kammel, M.; Wiedenmann, A.; Heinemann, A.; Bönnemann, H.; Matoussevitch, N. Phys. B: Phys. Condens. Matter 2006, 385, 457.

    Article  Google Scholar 

  33. Desvaux, C.; Amiensl, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Nat. Mater. 2005, 4, 750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed A. El-Gendy or Everett E. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clifford, D.M., El-Gendy, A.A., Lu, A.J. et al. Room Temperature Synthesis of Highly Magnetic Cobalt Nanoparticles by Continuous Flow in a Microfluidic Reactor. J Flow Chem 4, 148–152 (2014). https://doi.org/10.1556/JFC-D-14-00013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/JFC-D-14-00013

Keywords

Navigation