Skip to main content
Log in

Continuous Flow–Assisted Polyol Synthesis of Citric Acid Functionalized Iron Oxide Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The synthesis of nanoparticles by the continuous flow process is of great interest since it allows extensive control over reaction conditions with high precision and provides enhanced production capacity with excellent heat and mass transfer rates at high pressures and temperatures. In this study, iron oxide nanoparticles were synthesized via continuous flow process in combined micro- and milli-sized reactors in the presence of citric acid at variable functional ratios from 1:1 to 1:5. The results illustrated the possibility of continuous production of superparamagnetic magnetite and/or maghemite nanoparticles at the size range of 4.3 to 4.6 nm that exhibit remarkable colloidal stability in triethylene glycol (TEG) and saturation magnetizations up to 52 emu/g. Additionally, the nucleation and growth stages of nanoparticles were found to be unaffected by the presence of citric acid (CA) while an increase in the functional ratio was shown to affect the magnetic properties due to the presence of a non-magnetic layer around the particles. Furthermore, the viability of human lung adenocarcinoma (A549) cell lines was investigated with several concentrations of magnetic nanoparticles, and the biocompatibility of nanoparticles was illustrated at certain particle loadings after 48 h expressing the potential use in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bañobre-López, M., Teijeiro, A., Rivas, J.: Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology & Radiotherapy 18, 397–400 (2013). https://doi.org/10.1016/j.rpor.2013.09.011

  2. Arruebo, M., Fernández-Pacheco, R., Ibarra, M.R., Santamaría, J.: Magnetic nanoparticles for drug delivery. Nanotoday 2, pp. 22–32 (2007). https://doi.org/10.1016/S1748-0132(07)70084-1

  3. Bao, Y., Sherwood, J.A., Sun, Z.: Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J. Mater. Chem. C 6, 1280–1290 (2018). https://doi.org/10.1039/C7TC05854C

  4. Cornell, R.M., Schwertmann, U.: The iron oxides: structure, properties, reactions, occurrence and uses. Second ed., Wiley–VCH, Weinheim (2003). https://doi.org/10.1002/3527602097

  5. Bunge, A., Porav, A.S., Borodi, G., Radu, T., Pirnau, A., Berghian-Grosan, C., Turcu, R.: Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method. J. Mater. Sci. 54, 2853–2875 (2019). https://doi.org/10.1007/s10853-018-3030-9

  6. Hou, Y., Yu, J., Gao, S.: Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J. Mater. Chem. 13, 1983–1987 (2003). https://doi.org/10.1039/B305526D

  7. Feldmann, C., Jungk, G.O.: Polyol-mediated preparation of nanoscale oxide particles. Angewandte Chemie - International Edition 40, 359–362 (2001). https://doi.org/10.1002/1521-3773(20010119)40:2/359::AID-ANIE359/3.0.CO;2-B

  8. Grabs, I.M., Bradtmöller, C., Menzel, D., Garnweitner, G.: Formation mechanisms of iron oxide nanoparticles in different nonaqueous media. Cryst. Growth Des. 12, 1469–1475 (2012). https://doi.org/10.1021/cg201563h

  9. Wu, W., He, Q., Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008). https://doi.org/10.1007/s11671-008-9174-9

  10. Sopoušek, J., Pinkas, J., Buršík, J., Svoboda, M., Krásenský, P.: Continuous flow synthesis of iron oxide nanoparticles using water-in-oil microemulsion. Colloid J. 82, 727–734 (2020). https://doi.org/10.1134/S1061933X20060174

  11. Glasgow, W., Fellows, B., Qi, B., Darroudi, T., Kitchens, C., Ye, L., Crawford, T.M., Mefford, O.T.: Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particulogy 26, 47–53 (2016). https://doi.org/10.1016/j.partic.2015.09.011

  12. Salazar-Alvarez, G., Muhammed, M., Zagorodni, A.A.: Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem. Eng. Sci. 61, 4625–4633 (2006). https://doi.org/10.1016/j.ces.2006.02.032

  13. Günay, M., Baykal, A., Sözeri, H.: Structural and magnetic properties of triethylene glycol stabilized monodisperse Fe3O4 nanoparticles. J. Supercond. Nov. Magn. 25, 2415–2420 (2012). https://doi.org/10.1007/s10948-012-1627-9

  14. Hachani, R., Lowdell, M., Birchall, M., Hervault, A., Mertz, D., Begin-Colin, S., Thanh, N.T.K.: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8, 3278–3287 (2016). https://doi.org/10.1039/c5nr03867g

  15. Miguel-Sancho, N., Bomati-Miguel, O., Roca, A.G., Martinez, G., Arruebo, M., Santamaria, J.: Synthesis of magnetic nanocrystals by thermal decomposition in glycol media: effect of process variables and mechanistic study. Ind. Eng. Chem. Res. 51, 8348–8357 (2012). https://doi.org/10.1021/ie3002974

  16. Vega-Chacon, J., Picasso, G., Aviles-Felix, L., Jafelicci, M.: Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 015014 (2016). https://doi.org/10.1088/2043-6262/7/1/015014

  17. Jiang, P., Yang, X., Xin, Y., Qi, Y., Ma, X., Li, Q., Zhang Z.: Facile synthesis of watersoluble and superparamagnetic Fe3O4 dots through a polyol-hydrolysis route. J. Mater. Sci. 48, 2365–2369 (2013). https://doi.org/10.1007/s10853-012-7018-6

  18. Gao, J., Gu, H., Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009). https://doi.org/10.1021/ar9000026

  19. Sun, C., Lee, J.S.H., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008). https://doi.org/10.1016/j.addr.2008.03.018

  20. Mumtaz, S., Wang, S., Hussain, S.Z., Abdullah, M., Huma, Z., Iqbal, Z., Creran, B., Rotello, V.M., Hussain, I.: Dopamine coated Fe3O4 nanoparticles as enzyme mimics for the sensitive detection of bacteria. Chem. Commun. 53, 12306–12308 (2017). https://doi.org/10.1039/C7CC07149C

  21. Wang, W., Ji, X., Na, H.B., Safi, N., Smith, A., Palui, G., Perez, J.M., Mattoussi, H.: Design of a multi-dopamine- modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems. Langmuir 30, 6197–6208 (2014). https://doi.org/10.1021/la500974r

  22. Li, H., Wei, Q., Wang, G., Yang, M., Qu, F., Qian, Z.: Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine-functionalized iron oxide nanoparticles. Biosens. Bioelectron. 26, 3044–3049 (2011). https://doi.org/10.1016/j.bios.2010.12.011

  23. Rodriguez, A.F.R., Costa, T.P., Bini, R.A., Faria, F.S.E.D.V., Azevedo, R.B., Jafelicci, M. Jr., Coaquira, J.A.H., Martínez, M.A.R., Mantilla, J.C., Marques, R.F.C., Moraisde, P.C.: Surface functionalization of magnetite nanoparticle: a new approach using condensation of alkoxysilanes. Physica B: Condensed Matter. 521, 141–147 (2017). https://doi.org/10.1016/j.physb.2017.06.043

  24. Li, L., Mak, K.Y., Leung, C.W., Chan, K.Y., Chan, W.K., Zhong, W., Pong, P.W.T.: Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron. Eng. 110, 329–334 (2013). https://doi.org/10.1016/j.mee.2013.02.045

  25. Lin, J.F., Tsai, C.C., Lee, M.Z.: Linear birefringence and dichroism in citric acid coated Fe3O4 magnetic nanoparticles. J. Magn. Magn. Mater. 372, 147–158 (2014). https://doi.org/10.1016/j.jmmm.2014.07.064

  26. Behdadfar, B., Kermanpur, A., Sadeghi-Aliabadi, H., Morales, M.P., Mozaffari, M.: Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications. J. Magn. Magn. Mater. 324, 2211–2217 (2012). https://doi.org/10.1016/j.jmmm.2012.02.034

  27. Nigam, S., Barick, K.C., Bahadur, D.: Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 323, 237–243 (2011). https://doi.org/10.1016/j.jmmm.2010.09.009

  28. Cai, W., Wan, J.: Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007). https://doi.org/10.1016/j.jcis.2006.10.023

  29. Uson, L., Arruebo, M., Sebastian, V., Santamaria, J.: Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles. Chem. Eng. J. 340, 66–72 (2018). https://doi.org/10.1016/j.cej.2017.12.024

  30. Simmons, M., Wiles, C., Rocher, V., Francesconi, M.G., Watts, P.: The preparation of magnetic iron oxide nanoparticles in microreactors. J. Flow Chem. 3, 7–10 (2013). https://doi.org/10.1556/JFC-D-12-00024

  31. Zarei, M.J., Keshavarz, P., Zerafat, M.M., Sabbaghi, S.: Experimental investigation on the thermal conductivity of triethylene glycol-water-CuO nanofluids as a desiccant for dehydration process. Int. J. Nano Dimens. 11, 74–87 (2020). http://www.ijnd.ir/article_668145.html

  32. Yildiz-Ozer, M., Oztopcu-Vatan, P., Kus, G.: The investigation of ceranib-2 on apoptosis and drug interaction with carboplatin in human non small cell lung cancer cells in vitro. Cytotechnology 70, 387–396 (2018). https://doi.org/10.1007/s10616-017-0154-8

  33. Wan, J., Wei, C., Xiangxi, M., Enzhong, L.: Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007). https://doi.org/10.1039/B712795B

  34. Maity, D., Kale, S.N., Kaul-Ghanekar, R., Xue, J.M., Ding, J.: Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethylene glycol). J. Magn. Magn. Mater. 321, pp. 3093–3098 (2009). https://doi.org/10.1016/j.jmmm.2009.05.020

  35. Altan, C.L., Lenders, J.J.M., Bomans, P.H.H., With, G., Friedrich, H., Bucak, S., Sommerdijk, N.A.: Partial oxidation as a rational approach to kinetic control in bioinspired magnetite synthesis. Chem. A Eur. J. 21, 6150–6156 (2015). https://doi.org/10.1002/chem.201405973

  36. Kotoulas, A., Dendrinou-Samara, C., Angelakeris, M., Kalogirou, O.: The effect of polyol composition on the structural and magnetic properties of magnetite nanoparticles for magnetic particle hyperthermia. Materials 12(2663), 1–26 (2019). https://doi.org/10.3390/ma12172663

  37. Zhuang, J., Li, M., Pu, Y., Ragauskas, A.J., Yoo, C.G.: Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy. Appl. Sci. 10, 4345 (2020). https://doi.org/10.3390/app10124345

  38. Maity, D., Chandrasekharan, P., Si-Shen, F., Xue, J.M., Ding, J.: Polyol-based synthesis of hydrophilic magnetite nanoparticles. J. Appl. Phys. 107(09B310), 1–3 (2010). https://doi.org/10.1063/1.3355898

  39. Yuan, Y., Rende, D., Altan, C.L., Bucak, S., Ozisik, R., Borca-Tasciuc, D.: Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir 28, 13051–13059 (2012). https://doi.org/10.1021/la3022479

  40. Vijayakumar, S., Ganesan, S.: In vitro cytotoxicity assay on gold nanoparticles with different stabilizing agents. J. Nanomater. 734398 (2012). https://doi.org/10.1155/2012/734398

Download references

Funding

This work was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) (grant number 118M039, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Fahri Sarac.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkurt, N., Altan, C.L. & Sarac, M.F. Continuous Flow–Assisted Polyol Synthesis of Citric Acid Functionalized Iron Oxide Nanoparticles. J Supercond Nov Magn 35, 615–623 (2022). https://doi.org/10.1007/s10948-021-06132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06132-1

Keywords

Navigation