Skip to main content
Log in

Application of Thin-Layer Chromatography to the Lipophilicity Analysis of Selected Anticancer Quinobenzothiazine Derivatives

  • Original Research Papers
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Summary

The aim of this work was the application of thin-layer chromatography to the lipophilicity analysis of selected quinobenzothiazine derivatives. These are newly synthesized compounds, which were previously analyzed taking into consideration biological activity and their antiproliferative activity. Experimental lipophilicity parameters (RM0 and log PTLC) were determined by use of thin-layer chromatography, and also some theoretical values of lipophilicity were calculated by use of computer programs. The correlation between the experimental and the theoretical values of lipophilicity was found. Also, cluster analysis was performed for the data obtained. Phenothiazine derivatives were modified mainly by introduction of substituents into the nitrogen atom of the thiazine ring. The computer programs applied based on different theoretical approaches gave different values of lipophilicity parameters depending on the kind of substituent in the quinobenzothiazine system. None of the computer programs took into consideration the influence of substituents in a structure of the tested compounds, and in this case, the calculated lipophilicity parameter had the same value for all isomers with the same substituent. Also, none of the computer programs gave values of lipophilicity parameters close to these obtained by experimental method. The results of log Pcalc for the compounds 1–13 were quite different according to the computer program used (log Pcalc = 1.69–5.98). No computer programs gave values of log Pcalc close to values of log PTLC obtained experimentally. The reason can be the specific special structure of the tested phenothiazine derivatives consisting of tetracyclic system with additional nitrogen atom. It shows that calculation methods can be useless for the preliminary lipophilicity determination of such a kind of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jóźwiak, H. Szumiło, E. Soczewiński, Wiad. Chem. 55 (2001) 11–12.

    Google Scholar 

  2. K. Wu, B. Natarajan, L. Morkowchuk, M. Krein, C.M. Breneman, in: K. Rajan (ed.) Informatics for Materials Science and Engineer¬ing Data-Driven Discovery for Accelerated Experimentation and Application, Elsevier, Oxford, 2013.

  3. B. Zheng, M. Lyndon, J. Liq. Chromatogr. Relat. Technol. 33 (2010) 118–132.

    Article  CAS  Google Scholar 

  4. A. Visconti, G. Ermondi, G. Caron, R. Esposito, J. Comp. Aided Mol. Design 29 (2015) 361–370.

    Article  CAS  Google Scholar 

  5. K.L. Valkó, J. Pharm. Biomed. Anal. 130 (2016) 35–54.

    Article  Google Scholar 

  6. S.V. Blokhina, A.V. Sharapova, M.V. Ol’khovich, T.V. Volkova, L. German, Eur. J. Pharm. Sci. 93 (2016) 29–37.

    Article  CAS  Google Scholar 

  7. E. Kępczyńska, J. Bojarski, A. Pyka, J. Liq. Chromatogr. Relat. Technol. 26 (2003) 3277–3287.

    Article  Google Scholar 

  8. A. Pyka, J. Liq. Chromatogr. Relat. Technol. 32 (2009) 723–731.

    Article  CAS  Google Scholar 

  9. M. Dołowy, A. Pyka, Acta Pol. Pharm. Drug. Res. 72 (2015) 671–681.

    Google Scholar 

  10. M. Dołowy, A. Pyka, Acta Pol. Pharm. Drug Res. 72 (2015) 235–244.

    Google Scholar 

  11. B. Morak, M. Nowak, K. Pluta, J. Liq. Chromatogr. Relat. Tech¬nol. 30 (2007) 1845–1854.

    Article  CAS  Google Scholar 

  12. B. Morak-Młodawska, M. Nowak, K. Pluta, J. Liq. Chromatogr. Relat. Technol. 34 (2011) 375–387.

    Article  Google Scholar 

  13. W. Parys, A. Pyka, J. Liq. Chromatogr. Relat. Technol. 33 (2010) 1307–1318.

    Article  CAS  Google Scholar 

  14. A. Zięba, K. Bober, J. Liq. Chromatogr. Relat. Technol. 39 (2016) 104–109.

    Article  Google Scholar 

  15. B. Morak-Młodawska, K. Pluta, M. Jeleń, J. Chromatogr. Sci. 53 (2015) 462–466.

    Article  Google Scholar 

  16. A.P. Moldovan, S. Ersali, R. Pop, Studia UBB Chemia LXI (2016) 305–316.

  17. E. Rutkowska, K. Pająk, K. Jóźwiak, Acta Pol. Pharm. Drug Res. 70 (2013) 3–18.

    CAS  Google Scholar 

  18. J.K. Malik, H. Soni, A.K. Singhai, H. Pandey, Int. J. Pharm. Res. Allied Sci. 2 (2013) 1–13.

    CAS  Google Scholar 

  19. H.M. Patel, M.N. Noolvi, P. Sharma, V. Jaiswal, S. Bansal, S. Lohan, S.S. Kumar, V. Abbot, S. Dhiman, V. Bhardwaj, Med. Chem. Res. 23 (2014) 4991–5007.

    Article  CAS  Google Scholar 

  20. C.I. Cappelli, E. Benfenati, J. Cester, Environ. Res. 143 (2015) 26–32.

    Article  CAS  Google Scholar 

  21. S.O. Podunavac-Kuzmanovic, S.D. Velimirovic, APTEFF 41 (2010) 177–185.

    Article  CAS  Google Scholar 

  22. M. Bajda, S. Boryczka, J. Wietrzyk, B. Malawska, Biomed. Chromatogr. 21 (2007) 123–131.

    Article  CAS  Google Scholar 

  23. A. Zięba, M. Latocha, A. Sochanik, A. Nycz, D. Kuśmierz, Molecules 21 (2016) 1455–1468.

    Article  Google Scholar 

  24. OSIRIS Property Explorer, Actelion Pharmaceuticals Ltd., Allschwil, 2014.

  25. N. Viswanadha, A.K. Ghose, G.R. Revankar, R.K. Robins, J. Chem. Inf. Comput. Sci. 29 (1989) 163–172.

    Article  Google Scholar 

  26. A.K. Ghose, N. Viswanadhan, J.J. Wendoloski, J. Phys. Chem. A 102 (1998) 3762–3772.

    Article  CAS  Google Scholar 

  27. W.M. Meylan, P.H. Howard, J. Pharm. Sci. 84 (1995) 83–92.

    Article  CAS  Google Scholar 

  28. I.V. Tetko, V.Y. Tanchuk, L. Lai, J. Chem. Inf. Comput. Sci. 42 (2001) 1136–1145.

    Article  Google Scholar 

  29. I.V. Tetko, V.Y. Tanchuk, A.E. Villa, J. Chem. Inf. Comp. Sci. 41 (2001) 1407–1421.

    Article  CAS  Google Scholar 

  30. miLogP2.2, Molinspiration Property Calculation Service FAQ, http://www.molinspiration.com; accessed in 2015.

  31. I. Moriguci, S. Hirono, Q. Liu, I. Nakagome, Y. Matsushita, Chem. Pharm. Bull. 40 (1992) 127–130.

    Article  Google Scholar 

  32. T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, L. Lai, J. Chem. Inf. Model. 47 (2007) 2140–2148.

    Article  CAS  Google Scholar 

  33. N. Bodor, Z. Garbany, C.K. Wong, J. Am. Chem. Soc. 111 (1989) 3783–3786.

    Article  CAS  Google Scholar 

  34. K. Dross, C. Sonntag, R. Mannhold, J. Chromatogr. A 673 (1994) 113–124.

    Article  CAS  Google Scholar 

  35. R. Mannhold, G. Cruciani, K. Dross, R. Rekker, J. Comp. Aided Mol. Design 12 (1998) 573–581.

    Article  CAS  Google Scholar 

  36. VCCLAB, Virtual Computational Chemistry Laboratory, http://vcclab.org, 2005; accessed in 2015.

  37. I.V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V.A. Palyulin, E.V. Radchenko, N.S. Zefirov, A.S. Makarenko, V.Y. Tanchuk, V.V. Prokopenko, J. Comp. Aided Mol. Design 19 (2005) 453–463.

    Article  CAS  Google Scholar 

  38. B. Morak-Młodawska, K. Pluta, J. Liq. Chromatogr. Relat. Technol. 31 (2008) 611–618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Bober.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zięba, A., Bober, K. Application of Thin-Layer Chromatography to the Lipophilicity Analysis of Selected Anticancer Quinobenzothiazine Derivatives. JPC-J Planar Chromat 31, 105–111 (2018). https://doi.org/10.1556/1006.2018.31.2.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/1006.2018.31.2.2

Key Words

Navigation