Skip to main content
Log in

Reversed-phase thin-layer chromatographic and computational evaluation of lipophilicity parameters of α,β-unsaturated acids

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

The retention behavior of 10 previously synthesized α,β-unsaturated acids that exhibited antimicrobial activity was studied using 12 reversed-phase thin-layer chromatography (RP-TLC) systems. The mobile phases consisted of three solvent combinations (methanol‒water, acetonitrile‒water, and acetone‒water) in four different ratios (50:50, 60:40, 70:30, and 80:20, V/V). The chromatographic parameters \({R}_{M}^{0}\), a, and C0 were calculated for each system. The lipophilicity parameters of the tested compounds were predicted using various computational methods. The acetone‒water system demonstrated the highest correlation coefficients between the chromatographic and calculated lipophilicity parameters, which makes it the most suitable for evaluating the lipophilicity of the tested compounds. This system successfully reflected the effect of the lipophilic properties of the compounds on their retention behavior. To elucidate the retention mechanisms, the molecular properties of the tested compounds were calculated and a genetic algorithm was used to identify the properties with the greatest influence on the retention behavior. The interpretation of these descriptors revealed structural and physicochemical properties crucial for the behavior of the tested compounds. In addition, the pharmacokinetic properties of the compounds were estimated using in silico methods. The observed correlation between the retention mechanism and physicochemical properties affecting membrane transport and physiological binding ability highlights the applicability of RP-TLC conditions for rapid profiling of newly synthesized α,β-unsaturated acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875. https://doi.org/10.1517/17460441.2012.714363

    Article  CAS  PubMed  Google Scholar 

  2. Bayliss MK, Butler J, Feldman PL, Green DV, Leeson PD, Palovich MR, Taylor AJ (2016) Quality guidelines for oral drug candidates: dose, solubility and lipophilicity. Drug Disc Today 21(10):1719–1727. https://doi.org/10.1016/j.drudis.2016.07.007

    Article  CAS  Google Scholar 

  3. Arnott JA, Kumar R, Planey SL (2013) Lipophilicity indices for drug development. J Appl Biopharm Pharmacokinet 1(1):31–36. https://doi.org/10.14205/2309-4435.2013.01.01.6

    Article  CAS  Google Scholar 

  4. Kempińska D, Chmiel T, Kot-Wasik A, Mroz A, Mazerska Z, Namieśnik J (2019) State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends Anal Chem 113:54–73. https://doi.org/10.1016/j.trac.2019.01.011

    Article  CAS  Google Scholar 

  5. Morak-Młodawska E, Nowak M, Pluta K (2007) Determination of the lipophilicity parameters RM0 and LogP of new azaphenothiazines by reversed-phase thin-layer chromatography. J Liq Chromatogr Relat Technol 30:1845–1854. https://doi.org/10.1080/10826070701360749

    Article  CAS  Google Scholar 

  6. Csermely T, Kalász H, Deák K, Mohammed Y, Hasan MY, Darvas F, Petroianu G (2008) Lipophilicity determination of some ACE inhibitors by TLC. J Liq Chromatogr Relat Technol 31:2019–2034. https://doi.org/10.1080/10826070802198410

    Article  CAS  Google Scholar 

  7. Odović J, Karljiković-Rajić K, Trbojević-Stanković J, Stojimirović B, Vladimirov S (2012) Lipophilicity examination of some ACE inhibitors and hydrochlorothiazide on cellulose in RP thin-layer chromatography. Iran J Pharm Res 11:763–770. https://doi.org/10.22037/ijpr.2012.1117

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dobričić V, Turković N, Ivković B, Csuvik O, Vujić Z (2020) Evaluation of the lipophilicity of chalcones by RP-TLC and computational methods. JPC–J Planar Chromat 33:245–253. https://doi.org/10.1007/s00764-020-00029-w

    Article  CAS  Google Scholar 

  9. Starek M, Komsta Ł, Krzek J (2013) Reversed-phase thin-layer chromatography technique for the comparison of the lipophilicity of selected non-steroidal anti-inflammatory drugs. J Pharm Biomed Anal 85:132–137. https://doi.org/10.1016/j.jpba.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  10. Dabrowska M, Starek M, Skucinski J (2011) Lipophilicity study of some non-steroidal anti-inflammatory agents and cephalosporin antibiotics: a review. Talanta 86:35–51. https://doi.org/10.1016/j.talanta.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  11. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker RE, Mahmud AS, Miller IF, Rajeev et al (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20(4):193–205. https://doi.org/10.1038/s41579-021-00639-z

    Article  CAS  PubMed  Google Scholar 

  13. Vitnik VV, Milenković MT, Dilber SP, Vitnik ŽJ, Juranić IO (2012) Improved synthesis and in vitro study of antimicrobial activity of α, β-unsaturated and α-bromo carboxylic acids. J Chem Serb Soc 77(6):741–750. https://doi.org/10.2298/JSC111104016V

    Article  CAS  Google Scholar 

  14. Vitnik VV, Ivanović MD, Vitnik ŽJ, Đorđević JB, Žižak JS, Juranić ZD, Juranić IO (2009) One-step conversion of ketones to conjugated acids using bromoform. Syth Comm 39:1457–1471. https://doi.org/10.1080/00397910802531955

    Article  CAS  Google Scholar 

  15. Soczewinski E, Wachmeister CA (1962) The relation between the composition of certain ternary two-phase solvent systems and RM values. J Chromatogr A 7:311–320. https://doi.org/10.1016/S0021-9673(01)86422-0

    Article  CAS  Google Scholar 

  16. CambridgeSoft Corporation. 2005. ChemDraw ultra version 8.0.3. Cambridge, MA.

  17. Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27:21–35. https://doi.org/10.1021/ci00053a005

    Article  CAS  PubMed  Google Scholar 

  18. Viswanadhan VN, Ghose AK, Revankar GR, Robins RK (1989) Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J Chem Inf Comput Sci 29:163–172. https://doi.org/10.1021/ci00063a006

    Article  CAS  Google Scholar 

  19. Broto P, Moreau G, Vandycke C (1984) Molecular structures: perception, autocorrelation descriptor and SAR studies. System of atomic contributions for the calculation of n-octane/water partition coefficients. Eur J Med Chem Chim Theor 19:71–78. https://doi.org/10.1021/ci00063a006

    Article  CAS  Google Scholar 

  20. MarvinSketch 15.1.26 (2015). ChemAxon, Budapest. http://www.chemaxon.com

  21. https://admetmesh.scbdd.com

  22. http://www.swissadme.ch

  23. https://biosig.lab.uq.edu.au

  24. https://www.ufz.de

  25. Chirita RI, West C, Zubrzycki S, Finaru AL, Elfakir C (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218:5939–5963. https://doi.org/10.1016/j.chroma.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  26. Schuster G, Lindner W (2013) Comparative characterization of hydrophilic interaction liquid chromatography columns by linear solvation energy relationships. J Chromatogr A 1273:73–94. https://doi.org/10.1016/j.chroma.2012.11.075

    Article  CAS  PubMed  Google Scholar 

  27. Moriwaki H, Tian YS, Kawashita N, Takagi T (2018) Mordred: a molecular descriptor calculator. J Cheminform 10:1–14. https://doi.org/10.1186/s13321-018-0258-y

    Article  CAS  Google Scholar 

  28. Gramatica P, Chirico N, Papa E, Cassani S, Kovarich S (2013) QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem 34:2121–2132. https://doi.org/10.1002/jcc.23361

    Article  CAS  Google Scholar 

  29. Gramatica P, Cassani S, Chirico N (2014) QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem 35:1036–1044. https://doi.org/10.1002/jcc.23576

    Article  CAS  PubMed  Google Scholar 

  30. Fan J, de Lannoy IAM (2014) Pharmacokinetics. Biochem Pharmacol 87:93–120. https://doi.org/10.1016/j.bcp.2013.09.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Paola Gramatica for the free license for the software QSARINS.

Funding

This research was funded by the Ministry of Science, Technological Development, and Innovation, Republic of Serbia through a grant agreement with University of Belgrade-Faculty of Pharmacy (no. 451-03-47/2023-01/ 20016) and ICTM contract no. 451-03-47/2023-01/200026, and by the Institute of Physics Belgrade, National Institute of the Republic of Serbia through the grant from the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena S. Savić.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 204 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savić, J.S., Vitnik, V., Obradović, D. et al. Reversed-phase thin-layer chromatographic and computational evaluation of lipophilicity parameters of α,β-unsaturated acids. JPC-J Planar Chromat 36, 415–423 (2023). https://doi.org/10.1007/s00764-023-00274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-023-00274-9

Keywords

Navigation