Skip to main content
Log in

Sharp asymptotics in a fractional Sturm-Liouville problem

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The current research of fractional Sturm-Liouville boundary value problems focuses on the qualitative theory and numerical methods, and much progress has been recently achieved in both directions. The objective of this paper is to explore a different route, namely, construction of explicit asymptotic approximations for the solutions. As a study case, we consider a problem with left and right Riemann-Liouville derivatives, for which our analysis yields asymptotically sharp estimates for the sequence of eigenvalues and eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Birman, M.Z. Solomyak, Spectral asymptotics of weakly polar integral operators Izυ. AN SSSR 34 (1970), 1143–1158; DOI: 10.1070/im1970v004n05abeh000948.

    Google Scholar 

  2. T. Blaszczyk, M. Ciesielski, M. Klimek, J. Leszczynski, Numerical solution of fractional oscillator equation Appl. Math. Comput. 218, 6 (2011), 2480–2488; DOI: 10.1016/j.amc.2011.07.062.

    MathSciNet  MATH  Google Scholar 

  3. T. Blaszczyk, M. Ciesielski, Numerical solution of fractional Sturm-Liouville equation in integral form. Fract. Calc. Appl. Anal. 17, 2 (2014), 307–320; DOI: 10.2478/s13540-014-0170-8; https://www.degruyter.com/journal/key/FCA/17/2/html.

    Article  MathSciNet  Google Scholar 

  4. T. Blaszczyk, M. Ciesielski, Fractional oscillator equation: analytical solution and algorithm for its approximate computation. J. Vib. Control 22, 8 (2016), 2045–2052; DOI: 10.1177/1077546314566836.

    Article  MathSciNet  Google Scholar 

  5. J.C. Bronski, Asymptotics of Karhunen-Loeve eigenvalues and tight constants for probability distributions of passive scalar transport. Comm. Math. Phys. 238, 3 (2003), 563–582; DOI: 10.1007/s00220-003-0835-3.

    Article  MathSciNet  Google Scholar 

  6. P. Chigansky, M. Kleptsyna, D. Marushkevych, Mixed fractional Brownian motion: a spectral take. J. Math. Anal. Appl. 482, 2 (2020), 123558, DOI: 10.1016/j.jmaa.2019.123558.

    Article  MathSciNet  Google Scholar 

  7. P. Chigansky, Marina Kleptsyna, Marina Kleptsyna, Exact asymptotics in eigenproblems for fractional Brownian covariance operators. Stochastic Process. Appl. 128, 6 (2018), 2007–2059; DOI: 10.1016/j.spa.2017.08.019.

    Article  MathSciNet  Google Scholar 

  8. M. Dehghan, A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RAC-SAM 114, 2 (2020), Paper No. 46, 15; DOI: 10.1007/s13398-019-00756-8.

    Google Scholar 

  9. M-H. Derakhshan, A. Ansari, Fractional Sturm-Liouville problems for Weber fractional derivatives. Int. J. Comput. Math. 96, 2 (2019), 217–237; DOI: 10.1080/00207160.2018.1425797.

    Article  MathSciNet  Google Scholar 

  10. F.D. Gakhov, Boundary Value Problems. Dover Publications, Inc., New York (1990).

    MATH  Google Scholar 

  11. A.G. Gibbs, Analytical solutions of the neutron transport equation in arbitrary convex geometry. J. Mathematical Phys. 10 (1969), 875–890; DOI: 10.1063/1.1664917.

    Article  MathSciNet  Google Scholar 

  12. H. Jin, W. Liu, Eigenvalue problem for fractional differential operator containing left and right fractional derivatives. Adv. Difference Equ. (2016), Paper No. 246, 12; DOI: 10.1186/s13662-016-0950-z.

    Google Scholar 

  13. A.A. Kilbas, H M. Srivastava, J J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Sci. B.V, Amsterdam (2006).

    MATH  Google Scholar 

  14. M.L. Kleptsyna, D.A. Marushkevych, P.Yu. Chigansky, Asymptotic accuracy in estimation of a fractional signal in a small white noise. Automation and Remote Control 81, 3 (2020), 411–429; DOI: 10.1134/S0005117920030030.

    Article  MathSciNet  Google Scholar 

  15. M. Klimek, O.P. Agrawal, Fractional Sturm-Liouville problem. Comput. Math. Appl. 66, 5 (2013), 795–812; DOI: 10.1016/j.camwa.2012.12.011.

    Article  MathSciNet  Google Scholar 

  16. M. Klimek, M. Blasik, Regular fractional Sturm-Liouville problem with discrete spectrum: Solutions and applications. ICFDA’14 International Conference on Fractional Differentiation and Its Applications (2014), 1–6; DOI: 10.1109/ICFDA.2014.6967383.

    Google Scholar 

  17. M. Klimek, T. Odzijewicz, A.B. Malinowska, Variational methods for the fractional Sturm-Liouville problem. J. Math. Anal. Appl. 416, 1 (2014), 402–426; DOI: 10.1016/j.jmaa.2014.02.009.

    Article  MathSciNet  Google Scholar 

  18. M. Klimek, Homogeneous Robin boundary conditions and discrete spectrum of fractional eigenvalue problem. Fract. Calc. Appl. Anal. 22, 1 (2019), 78–94; DOI: 10.1515/fca-2019-0005 https://www.degruyter.com/journal/key/FCA/22/1/html.

    Article  MathSciNet  Google Scholar 

  19. M. Klimek, M. Blasik. Regular Sturm-Liouville problem with Riemann-Liouville derivatives of order in (1, 2): discrete spectrum, solutions and applications. Advances in Modelling and Control of Non-integer Order Systems, Vol. 320 of Lect. Notes Electr. Eng. Springer, Cham (2015), 25–36; DOI: 10.1007/978-3-319-09900-2.

    Google Scholar 

  20. M. Klimek, M. Ciesielski, T. Blaszczyk, Exact and numerical solutions of the fractional Sturm-Liouville problem. Fract. Calc. Appl. Anal. 21, 1 (2018), 45–71; DOI: 10.1515/fca-2018-0004 https://www.degruyter.com/journal/key/FCA/21/1/html.

    Article  MathSciNet  Google Scholar 

  21. J. Li, J. Qi, Eigenvalue problems for fractional differential equations with right and left fractional derivatives. Appl. Math. Comput. 256 (2015), 1–10; DOI: 10.1016/j.amc.2014.12.146.

    MathSciNet  MATH  Google Scholar 

  22. J. Li, J. Qi, Note on a nonlocal Sturm-Liouville problem with both right and left fractional derivatives. Appl. Math. Lett. 97 (2019), 14–19; DOI: 10.1016/j.aml.2019.05.011.

    Article  MathSciNet  Google Scholar 

  23. W.V. Li, Q.M. Shao, Gaussian processes: inequalities, small ball prob-abilities and applications. Stochastic Processes: Theory and Methods, Vol.19 of Handbook of Statist. North-Holland, Amsterdam (2001), 533–597; DOI: 10.1016/S0169-7161(01)19019-X.

    Chapter  Google Scholar 

  24. A.I. Nazarov, Spectral asymptotics for a class of integro-differential equations arising in the theory of fractional Gaussian processes. Commun. Contemp. Math., Online Ready (2020); DOI: 10.1142/S0219199720500492; arXiv Preprint: 1908.10299 (2019).

    Google Scholar 

  25. R. Ozarslan, E. Bas, D. Baleanu, Representation of solutions for Sturm-Liouville eigenvalue problems with generalized fractional derivative. Chaos 30, 3 (2020), 033137-11; DOI: 10.1063/1.5131167.

    Google Scholar 

  26. B. V. Pal'cev, Asymptotic behavior of the spectrum and eigenfunctions of convolution operators on a finite interval with the kernel having a homogeneous Fourier transform. Dokl. Akad. Nauk SSSR 218 (1974), 28–31.

    MathSciNet  Google Scholar 

  27. B. V. Pal'tsev, Asymptotics of the spectrum of integral convolution operators on a finite interval with homogeneous polar kernels. Izv. Ross. Akad. Nauk Ser. Mat. 67, 4 (2003), 67–154; DOI: 10.1070/IM2003v067n04ABEH000443.

    Article  MathSciNet  Google Scholar 

  28. J. Qi, S. Chen, Eigenvalue problems of the model from nonlocal con-tinuum mechanics. J. Math. Phys. 52, 7 (2011), 073516-14; DOI: 10.1063/1.3610673.

    Google Scholar 

  29. S. Ukai, Asymptotic distribution of eigenvalues of the kernel in the Kirkwood-Riseman integral equation. J. Mathematical Phys. 12 (1971), 83–92; DOI: 10.1063/1.1665491.

    Article  MathSciNet  Google Scholar 

  30. M. Zayernouri, G E. Karniadakis, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252 (2013), 495–517; DOI: 10.1016/j.jcp.2013.06.031.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Chigansky.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigansky, P., Kleptsyna, M. Sharp asymptotics in a fractional Sturm-Liouville problem. Fract Calc Appl Anal 24, 715–738 (2021). https://doi.org/10.1515/fca-2021-0031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0031

MSC 2010

Key Words and Phrases

Navigation