Skip to main content
Log in

On Representation Formulas for Solutions of Linear Differential Equations with Caputo Fractional Derivatives

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the paper, a linear differential equation with variable coefficients and a Caputo fractional derivative is considered. For this equation, a Cauchy problem is studied, when an initial condition is given at an intermediate point that does not necessarily coincide with the initial point of the fractional differential operator. A detailed analysis of basic properties of the fundamental solution matrix is carried out. In particular, the Hölder continuity of this matrix with respect to both variables is proved, and its dual definition is given. Based on this, two representation formulas for the solution of the Cauchy problem are proposed and justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Atanackovic, D. Dolicanin, S. Pilipovic, and B. Stankovic, Cauchy problems for some classes of linear fractional differential equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1039–1059; DOI: 10.2478/s13540-014-0213-1; https://www.degruyter.com/view/journals/fca/17/4/fca.17.issue-4.xml/view/journals/fca/17/4/fca.17.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  2. B. Bonilla, M. Rivero, and J.J. Trujillo, On systems of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187, No 1 (2007), 68–78; DOI: 10.1016/j.amc.2006.08.104.

    MathSciNet  MATH  Google Scholar 

  3. L. Bourdin, Cauchy–Lipschitz theory for fractional multi-order dynamics: State-transition matrices, Duhamel formulas and duality theorems. Differ. Integral Equ. 31, No 7-8, (2018), 559–594; https://projecteuclid.org/euclid.die/1526004031/euclid.die/1526004031.

    MathSciNet  MATH  Google Scholar 

  4. L. Bourdin, Weighted Hölder continuity of Riemann–Liouville fractional integrals–Application to regularity of solutions to fractional Cauchy problems with Carathéodory dynamics. Fract. Calc. Appl. Anal. 22, No 3 (2019), 722–749; DOI: 10.1515/fca-2019-0040; https://www.degruyter.com/view/journals/fca/22/3/fca.22.issue-3.xml/view/journals/fca/22/3/fca.22.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  5. A.A. Chikriy and I.I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo and Miller–Ross. J. Autom. Inf. Sci. 40, No 6 (2008), 1–11; DOI: 10.1615/JAutomatInfScien.v40.i6.10.

    Article  Google Scholar 

  6. N.D. Cong and H.T. Tuan, Generation of nonlocal fractional dynamical systems by fractional differential equations. J. Integral Equations Appl. 29, No 4 (2017), 585–608; DOI: 10.1216/JIE-2017-29-4-585.

    Article  MathSciNet  Google Scholar 

  7. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Volume 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin (2010).

    MATH  Google Scholar 

  8. J. Duan, A generalization of the Mittag-Leffler function and solution of system of fractional differential equations. Adv. Differ. Eq. Art. No 239, (2018); DOI: 10.1186/s13662-018-1693-9.

    Google Scholar 

  9. M.I. Gomoyunov, Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems. Frac. Calc. Appl. Anal. 21, No 5 (2018), 1238–1261; DOI: 10.1515/fca-2018-0066; https://www.degruyter.com/view/journals/fca/21/5/fca.21.issue-5.xml/view/journals/fca/21/5/fca.21.issue-5.xml.

    Article  MathSciNet  Google Scholar 

  10. M.I. Gomoyunov, Approximation of fractional order conflict-controlled systems. Progr. Fract. Differ. Appl. 5, No 2 (2019), 143–155; DOI: 10.18576/pfda/050205.

    Article  Google Scholar 

  11. M.I. Gomoyunov, Solution to a zero-sum differential game with fractional dynamics via approximations. Dyn. Games Appl. 10, No 2 (2020), 417–443; DOI: 10.1007/s13235-019-00320-4.

    Article  MathSciNet  Google Scholar 

  12. M.I. Gomoyunov and N.Yu. Lukoyanov, Guarantee optimization in functional-differential systems with a control aftereffect. J. Appl. Math. Mech. 76, No 4 (2012), 369–377; DOI: 10.1016/j.jappmathmech.2012.09.002.

    Article  MathSciNet  Google Scholar 

  13. M.I. Gomoyunov and N.Yu. Lukoyanov, On the numerical solution of differential games for neutral-type linear systems. Proc. Steklov Inst. Math. 301, No 1 (2018), 44–56; DOI: 10.1134/S0081543818050048.

    Article  MathSciNet  Google Scholar 

  14. D. Idczak and R. Kamocki, On the existence and uniqueness and formula for the solution or R–L fractional Cauchy problem in ℝn. Fract. Calc. Appl. Anal. 14, No 4 (2011), 538–553; DOI: 10.2478/s13540-011-0033-5; https://www.degruyter.com/view/journals/fca/14/4/fca.14.issue-4.xml/view/journals/fca/14/4/fca.14.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  15. T. Kaczorek and D. Idczak, Cauchy formula for the time-varying linear systems with Caputo derivative. Fract. Calc. Appl. Anal. 20, No 2 (2017), 494–505; DOI: 10.1515/fca-2017-0025; https://www.degruyter.com/view/journals/fca/20/2/fca.20.issue-2.xml/view/journals/fca/20/2/fca.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Volume 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  17. A.N. Krasovskii and N.N. Krasovskii, Control under Lack of Information. Birkhäuser, Boston (1995).

    Book  Google Scholar 

  18. N.N. Krasovskii and N.Yu. Lukoyanov, Problem of conflict control with hereditary information. J. Appl. Math. Mech. 60, No 6 (1996), 869–882; DOI: 10.1016/S0021-8928(96)00109-8.

    Article  MathSciNet  Google Scholar 

  19. N.Yu. Lukoyanov and M.I. Gomoyunov, Differential games on minmax of the positional quality index. Dyn. Games Appl. 9, No 3 (2019), 780–799; DOI: 10.1007/s13235-018-0281-7.

    Article  MathSciNet  Google Scholar 

  20. N.Yu. Lukoyanov and T.N. Reshetova, Problems of conflict control of high dimensionality functional systems. J. Appl. Math. Mech. 62, No 4 (1998), 545–554; DOI: 10.1016/S0021-8928(98)00071-9.

    Article  MathSciNet  Google Scholar 

  21. A.V. Pskhu, Initial-value problem for a linear ordinary differential equation of noninteger order. Sb. Math. 202, No 4 (2011), 571–582; DOI: 10.4213/sm7645.

    Article  MathSciNet  Google Scholar 

  22. S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993).

    MATH  Google Scholar 

  23. A. Zahariev and H. Kiskinov, Existence of fundamental matrix for neutral linear fractional system with distributed delays. Int. J. Pure Appl. Math. 119, No 1 (2018), 31–51; DOI: 10.12732/ijpam.v119i1.3.

    Google Scholar 

  24. H. Zhang and D. Wu, Variation of constant formulae for time invariant and time varying Caputo fractional delay differential systems. J. Math. Res. Appl. 34, No 5 (2014), 549–560; DOI: 10.3770/j.issn:2095-2651.2014.05.006.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Gomoyunov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomoyunov, M.I. On Representation Formulas for Solutions of Linear Differential Equations with Caputo Fractional Derivatives. Fract Calc Appl Anal 23, 1141–1160 (2020). https://doi.org/10.1515/fca-2020-0058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0058

MSC 2010

Key Words and Phrases

Navigation