Skip to main content
Log in

Formal Consistency Versus Actual Convergence Rates of Difference Schemes for Fractional-Derivative Boundary Value Problems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Finite difference methods for approximating fractional derivatives are often analyzed by determining their order of consistency when applied to smooth functions, but the relationship between this measure and their actual numerical performance is unclear. Thus in this paper several wellknown difference schemes are tested numerically on simple Riemann-Liouville and Caputo boundary value problems posed on the interval [0, 1] to determine their orders of convergence (in the discrete maximum norm) in two unexceptional cases: (i) when the solution of the boundary-value problem is a polynomial (ii) when the data of the boundary value problem is smooth. In many cases these tests reveal gaps between a method’s theoretical order of consistency and its actual order of convergence. In particular, numerical results show that the popular shifted Grünwald-Letnikov scheme fails to converge for a Riemann-Liouville example with a polynomial solution p(x), and a rigorous proof is given that this scheme (and some other schemes) cannot yield a convergent solution when p(0) = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010).

    Book  Google Scholar 

  2. D. Elliott, An asymptotic analysis of two algorithms for certain Hadamard finite-part integrals. IMA J. Numer. Anal. 13, No 3 (1993), 445–462.

    Article  MathSciNet  Google Scholar 

  3. J.L. Gracia, M. Stynes, Upwind and central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. J. Comput. Appl. Math. 273 (2015), 103–115.

    Article  MathSciNet  Google Scholar 

  4. N. Kopteva, M. Stynes, An efficient collocation method for a Caputo two-point boundary value problem. To appear in: BIT Numer. Math.; DOI:10.1007/s10543-014-0539-4.

  5. C. Li, F. Zeng, Finite difference methods for fractional differential equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012) 130014 (28 pages).

  6. J.T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16 No 3 (2011), 1140–1153.

    Article  MathSciNet  Google Scholar 

  7. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, No 1 (2004), 65–77.

    Article  MathSciNet  Google Scholar 

  8. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York - London (1974).

    MATH  Google Scholar 

  9. F.W.J. Olver, D.W. Lozier, R. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  10. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  11. S. Shen, F. Liu, Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends. ANZIAM J. 46, No C (2004/05), C871–C887.

    Article  MathSciNet  Google Scholar 

  12. E. Sousa, Numerical approximations for fractional diffusion equations via splines. Comput. Math. Appl. 62, No 3 (2011), 938–944.

    Article  MathSciNet  Google Scholar 

  13. E. Sousa, How to approximate the fractional derivative of order 1 < a = 2. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 22, No 4 (2012), 1250075.

    Article  MathSciNet  Google Scholar 

  14. E. Sousa, C. Li, A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative. Appl. Numer. Math. 90 (2015), 22–37.

    Article  MathSciNet  Google Scholar 

  15. M. Stynes, J.L. Gracia, A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. To appear in: IMA J. Numer. Anal.; DOI:10.1093/imanum/dru011.

  16. W. Tian, H. Zhou, W. Deng, A class of second-order difference approximations for solving space fractional diffusion equations. To appear in: Math. Comp.; DOI:10.1090/S0025-5718-2015-02917-2.

  17. H. Zhou, W. Tian, W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, No 1 (2013), 45–66.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Gracia.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracia, J.L., Stynes, M. Formal Consistency Versus Actual Convergence Rates of Difference Schemes for Fractional-Derivative Boundary Value Problems. FCAA 18, 419–436 (2015). https://doi.org/10.1515/fca-2015-0027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0027

MSC 2010

Keywords

Navigation