Skip to main content
Log in

Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two newly synthesised 1,8-naphthalimide-based proton-receptor fluorescent probes N-allyl-4-(4’-N,N-diethylpropionamide-acetamido-piperazinyl)-1,8-naphthalimide I and N-(N,N-dibenzylpro- pionamide-acetamido)-4-allyl-1-piperazinyl-1,8-naphthalimide II were synthesised to monitor the change in pH in such a way that the presence of protons can increase the fluorescence intensity of these compounds. Unlike most of the other pH-sensitive probes reported, the probes possess the obvious advantage of being able to detect stronger acids at pH ≈ 2 and a combination of the two probes could detect a wider pH scale from 1.98 to 6.59; this should be very useful for monitoring the pH of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bojinov, V. B., Georgiev, N. I., & Bosch, P. (2009). Design and synthesis of highly photostable yellow-green emitting 1,8-naphthalimides as fluorescent sensors for metal cations and protons. Journal of Fluorescence, 19, 127–139. DOI: 10.1007/s10895–008–0394–2.

    Article  CAS  Google Scholar 

  • Chen, X. Q., Kang, S. W., Kim, M. J., Kim, J. H., Kim, Y. S., Kim, H. J., Chi, B., Kim, S. J., Lee, J. Y., & Yoon, J. Z. (2010a). Thin-film formation of imidazolium-based conjugated polydiacetylenes and their application for sensing anionic surfactants. Angewandte Chemie International Edition, 49, 1422–1425. DOI: 10.1002/anie.200905041.

    Article  CAS  Google Scholar 

  • Chen, X. Q., Zhou, Y., Peng, X. J., & Yoon, J. Z. (2010b). Fluorescent and colorimetric probes for detection of thiols. Chem- icalSocietyReviews, 39, 2120–2135. DOI: 10.1039/b925092a.

    CAS  Google Scholar 

  • Chereddy, N. R., Thennarasu, S., & Mandal, A. B. (2013). A highly selective and efficient single molecular FRET based sensor for ratiometric detection of Fe3+ ions. The Analyst, 138, 1334–1337. DOI: 10.1039/c3an36577h.

    Article  CAS  Google Scholar 

  • Chinapang, P., Ruangpornvisuti, V., Sukwattanasinitt, M., & Rashatasakhon, P. (2015). Ferrocenyl derivative of 1,8- naphthalimide as a new turn-on fluorescent sensor for Au(III) ion. Dyes and Pigments, 112, 236–238. DOI: 10.1016/j. dyepig.2014.07.013.

    Article  CAS  Google Scholar 

  • Czirok, J. B., Bojtar, M., Hessz, D., Baranyai, P., Drahos, L., Kubinyi, M., & Bitter, I. (2013). Aminonaphthalimide-based dipodal imidazolium/triazole receptors for fluorescent sensing of nucleoside polyphosphates. Sensors and Actuators B, 182, 280–287. DOI: 10.1016/j.snb.2013.02.046.

    Article  CAS  Google Scholar 

  • de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 97, 1515–1566. DOI: 10.1021/cr960386p.

    Article  Google Scholar 

  • Du, X. M., Lei, N. Y., Hu, P., Lei, Z., Ong, D. H. C., Ge, X. W., Zhang, Z. C., & Lam, M. H. W. (2013). In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres. Analytica Chimica Acta, 787, 193–202. DOI: 10.1016/j.aca.2013.05.022.

    Article  CAS  Google Scholar 

  • Gan, J. A., Tian, H., Wang, Z. H., Chen, K. C., Hill, J., Lane, P. A., Rahn, M. D., Fox, A. M., & Bradley, D. D. C. (2002). Synthesis and luminescence properties of novel ferrocene- naphthalimides dyads. Journal of Organometallic Chemistry, 645, 168–175. DOI: 10.1016/s0022–328x(01)01416–4.

    Article  CAS  Google Scholar 

  • Gan, J. A., Chen, K. C., Chang, C. P., & Tian, H. (2003). Luminescent properties and photo-induced electron transfer of naphthalimides with piperazine substituent. Dyes and Pigments, 57, 21–28. DOI: 10.1016/s0143–7208(02)00162–6.

    Article  CAS  Google Scholar 

  • Georgiev, N. I., Yaneva, I. S., Surleva, A. R., & Asiri, A. M. (2013). Synthesis, sensor activity and logic behavior of a highly water-soluble naphthalimide derivative. Sensors and Actuators B, 184, 54–63. DOI: 10.1016/j.snb.2013.04.066.

    Google Scholar 

  • Georgiev, N. I., Asiri, A. M., Alamry, K. A., Obaid, A. Y., & Bojinov, V. B. (2014a). Selective ratiometric pH-sensing PA- MAM light-harvesting dendrimer based on Rhodamine 6G and 1,8-naphthalimide. Journal of Photochemistry and Photobiology A, 277, 62–74. DOI: 10.1016/j.jphotochem.2013.12.005.

    Article  CAS  Google Scholar 

  • Georgiev, N. I., Asiri, A. M., Qusti, A. H., Alamry, K. A., & Bojinov, V. B. (2014b). Design and synthesis of pH-selective fluorescence sensing PAMAM light-harvesting dendrons based on 1,8-naphthalimides. Sensors and Actuators B, 190, 185–198. DOI: 10.1016/j.snb.2013.08.074.

    Article  CAS  Google Scholar 

  • Grabchev, I., Qian, X. H., Xiao, Y., & Zhang, R. (2002). Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide. New Journal of Chemistry, 26, 920–925. DOI: 10.1039/b111519g.

    Article  CAS  Google Scholar 

  • Grabchev, I., Soumillion, J. P., Muls, B., & Ivanova, G. (2004). Poly(amidoamine) dendrimer peripherally modified with 4-N,N-dimethylaminoethyleneamino-1,8-naphthalimide as a sensor of metal cations and protons. Photochemical & Photobiological Sciences, 3, 1032–1037. DOI: 10.1039/b412384k.

    Article  CAS  Google Scholar 

  • Gui, R. J., An, X. Q., & Huang, W. X. (2013). An improved method for ratiometric fluorescence detection of pH and Cd2+ using fluorescein isothiocyanate-quantum dots conjugates. Analytica Chimica Acta, 767, 134–140. DOI: 10.1016/j.aca.2013.01.006.

    Article  CAS  Google Scholar 

  • Gunnlaugsson, T., McCoy, C. P., Morrow, R. J., Phelan, C., & Stomeo, F. (2003). Towards the development of controllable and reversible ‘on-off’ luminescence switching in soft-matter; synthesis and spectroscopic investigation of 1,8-naphthalimide-based PET (photoinduced electron transfer) chemosensors for pH in water-permeable hydrogels. Arkivoc, 2003, 216–228. DOI: 10.3998/ark.5550190.0004.719.

    Article  Google Scholar 

  • Gunnlaugsson, T., Glynn, M., Tocci, G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017.

    Article  CAS  Google Scholar 

  • Hamilton, G. R. C., Sahoo, S. K., Kamila, S., Singh, N., Kaur, N., Hylan, B. W., & Callan, J. F. (2015). Optical probes for the detection of protons, and alkali and alkaline earth metal cations. Chemical Society Reviews, 44, 4415–4432. DOI: 10.1039/c4cs00365a.

    Article  CAS  Google Scholar 

  • Hu, Y. L., Wang, B. Y., & Su, Z. X. (2008). Synthesis and properties of a new green water-soluble polymer for proton and metal-cation sensing. Journal of Applied Polymer Science, 111, 1931–1935. DOI: 10.1002/app.29215.

    Article  Google Scholar 

  • Ikeda, Y., Nitta, Y., & Yamada, K. (1969). Studies on piperazine compounds. II. Syntheses of piperazinoalkylbarbituric acid derivatives and some of their pharmacological actions. Journal of the Pharmaceutical Society of Japan, 89, 669–676.

    CAS  Google Scholar 

  • Jokic, T., Borisov, S. M., Saf, R., Nielsen, D. A., Kuhl, M., & Klimant, I. (2012). Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Analytical Chemistry, 84, 6723–6730. DOI: 10.1021/ac3011796.

    Article  CAS  Google Scholar 

  • Kim, H. N., Guo, Z. Q., Zhu, W. H., Yoon, J. Y., & Tian, H. (2011). Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chemical Society Reviews, 40, 79–93. DOI: 10.1039/c0cs00058b.

    Article  CAS  Google Scholar 

  • Lee, M. H., Park, N. Y., Yi, C. S., Han, J. H., Hong, J. H., Kim, K. P., Kang, D. H., Sessler, J. L., Kang, C. H., & Kim, J. S. (2014). Mitochondria-imbilized pH-sensitive off-on fluorescent probe. Journal of the American Chemical Society, 136, 14136–14142. DOI: 10.1021/ja506301n.

    Article  CAS  Google Scholar 

  • Li, H. L., Guan, H., Duan, X. R., Hu, J., Wang, G. R., & Wang, Q. (2013). An acid catalyzed reversible ring-opening/ring- closure reaction involving a cyano-rhodamine spirolactam. Organic & Biomolecular Chemistry, 11, 1805–1809. DOI: 10.1039/c3ob27356c.

    Article  CAS  Google Scholar 

  • Long, L. L., Wu, Y. J., & Wang, L. (2014). A fluorescence ratiometric probe for imaging of acidic pH in living cells. Advanced Materials Research, 864–867, 83–87. DOI: 10.4028/www.scientific.net/amr.864–867.83.

    Google Scholar 

  • Lv, H. S., Huang, S. Y., Zhao, B. X., & Miao, J. Y. (2013a). A new rhodamine B-based lysosomal pH fluorescent indicator. Analytica Chimica Acta, 788, 177–182. DOI: 10.1016/j.aca.2013.06.038.

    Article  CAS  Google Scholar 

  • Lv, H. S., Liu, J., Zhao, J., Zhao, B. X., & Miao, J. Y. (2013b). Highly selective and sensitive pH-responsive fluorescent probe in living Hela and HUVEC cells. Sensors and Actuators B, 177, 956–963. DOI: 10.1016/j.snb.2012.12.014.

    Article  CAS  Google Scholar 

  • Lv, H. S., Huang, S. Y., Xu, Y., Dai, X., Miao, J. Y., & Zhao, B. X. (2014). A new fluorescent pH probe for imaging lysosomes in living cells. Bioorganic & Medicinal Chemistry Letters, 24, 535–538. DOI: 10.1016/j.bmcl.2013.12.025.

    Article  CAS  Google Scholar 

  • Marinova, N. V., Georgiev, N. I., & Bojinov, V. B. (2011). Design, synthesis and pH sensing properties of novel 1,8-naphtalimide-based bichromophoric system. Journal of Photochemistry and Photobiology A, 222, 132–140. DOI: 10. 1016/j.jphotochem.2011.05.012.

    Article  CAS  Google Scholar 

  • McMahon, B. K., Pal, R., & Parker, D. (2013). A bright and responsive europium probe for determination of pH change within the endoplasmic reticulum of living cells. Chemical Communications, 49, 5363–5365. DOI: 10.1039/c3cc42308e.

    Article  CAS  Google Scholar 

  • Mu, H. L., Gong, R., Ma, Q., Sun, Y. M., & Fu, E. Q. (2007). A novel colorimetric and fluorescent chemosensor: Synthesis and selective detection for Cu2+ and Hg2+. Tetrahedron Letters, 48, 5525–5529. DOI: 10.1016/j.tetlet.2007.05.155.

    Article  CAS  Google Scholar 

  • Nicosia, C., Krabbenborg, S. O., Reinhoudt, D. N., & Huskens, J. (2013). In situ fluorimetric detection of micrometer-scale pH gradients at the solid/liquid interface. Supramolecular Chemistry, 25, 756–766. DOI: 10.1080/10610278.2013.814775.

    Article  CAS  Google Scholar 

  • Ren, J., Wu, Z., Zhou, Y., Li, Y., & Xu, Z. X. (2011). Colorimetric fluoride sensor based on 1,8-naphthalimide derivatives. Dyes and Pigments, 91, 442–445. DOI: 10.1016/j.dyepig. 2011.04.012.

    Article  CAS  Google Scholar 

  • Speziale, A. J., & Hamm, P. C. (1956). Preparation of some new 2-chloroacetamides. Journal of the American Chemical Society, 78, 2556–2559. DOI: 10.1021/ja01592a061.

    Article  CAS  Google Scholar 

  • Urano, Y., Asanuma, D., Hama, Y., Koyama, Y., Barrett, T., Kamiya, M., Nagano, T., Watanabe, T., Hasegawa, A., Choyke, P. L., & Kobayashi, H. (2009). Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nature Medicine, 15, 104–109. DOI: 10.1038/nm.1854.

    Article  CAS  Google Scholar 

  • Wang, D. H., Zhang, X. L., He, C., & Duan, C. Y. (2010). Aminonaphthalimide-based imidazolium podands for turnon fluorescence sensing of nucleoside polyphosphates. Organic & Biomolecular Chemistry, 8, 2923–2925. DOI: 10. 1039/c004148c.

    Article  CAS  Google Scholar 

  • Wang, C. C., Zheng, X. L., Huang, R., Yan, S. Y., Xie, X., Tian, T., Huang, S. W., Weng, X. C., & Zhou, X. (2012). A 4- amino-1,8-naphthalimide derivative for selective fluorescent detection of palladium(II)ions. Asian Journal of Organic Chemistry, 1, 259–263. DOI: 10.1002/ajoc.201200061.

    Article  CAS  Google Scholar 

  • Wang, C. C., Feng, S., Wu, L. Y., Yan, S. Y., Zhong, C., Guo, P., Huang, R., Weng, X. C., & Zhou, X. (2014). A new fluorescent turn-on probe for highly sensitive and selective detection of sulfite and bisulfite. Sensors and Actuators B, 190, 792–799. DOI: 10.1016/j.snb.2013.09.045.

    Article  CAS  Google Scholar 

  • Xie, P. H., Guo, F. Q., Wang, W. F., & Liu, X. Y. (2010). A naked-eye, selective and sensitive chemosensor for fluoride ion. Chemical Papers, 64, 723–728. DOI: 10.2478/s11696-010–0060–4.

    Article  CAS  Google Scholar 

  • Xu, Z. C., Chen, X. Q., Kim, H. N., & Yoon, J. Y. (2010a). Sensors for the optical detection of cyanide ion. Chemical Society Reviews, 39, 127–137. DOI: 10.1039/b907368j.

    Article  CAS  Google Scholar 

  • Xu, Z. C., Kim, S. K., & Yoon, J. Y. (2010b). Revisit to imi- dazolium receptors for the recognition of anions: Highlighted research during 2006–2009. Chemical Society Reviews, 39, 1457–1466. DOI: 10.1039/b918937h.

    Article  Google Scholar 

  • Xu, Z. C., Yoon, J. Y., & Spring, D. R. (2010c). Fluorescent chemosensors for Zn2+. Chemical Society Reviews, 39, 1996–2006. DOI: 10.1039/b916287a.

    Article  CAS  Google Scholar 

  • Xu, Y., Jiang, Z., Xiao, Y., Bi, F. Z., Miao, J. Y., & Zhao, B. X. (2014). A new fluorescent pH probe for extremely acidic conditions. Analytica Chimica Acta, 820, 146–151. DOI: 10.1016/j.aca.2014.02.029.

    Article  CAS  Google Scholar 

  • Yang, M. Y., Song, Y. Q., Zhang, M., Lin, S. X., Hao, Z. Y., Liang, Y., Zhang, D. M., & Chen, P. R. (2012). Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. Angewandte Chemie International Edition, 51, 7674–7679. DOI: 10.1002/anie.201204029.

    Article  CAS  Google Scholar 

  • Yordanova, S., Grabchev, I., Stoyanov, S., & Petkov, I. (2014). New detectors for metal cations and protons based on PA- MAM dendrimers modified with 1,8-naphthalimide units. Journal of Photochemistry and Photobiology A, 283, 1–7. DOI: 10.1016/j.jphotochem.2014.03.002.

    Article  CAS  Google Scholar 

  • Zhang, J. F., Lim, C. S., Bhuniya, S., Cho, B. R., & Kim, J. S. (2011). A highly selective colorimetric and ratiometric two- photon fluorescent probe for fluoride ion detection. Organic Letters, 13, 1190–1193. DOI: 10.1021/ol200072e.

    Article  CAS  Google Scholar 

  • Zhang, X., Jing, S. Y., Huang, S. Y., Zhou, X. W., Bai, J. M., & Zhao, B. X. (2015). New fluorescent pH probes for acid conditions. Sensors and Actuators B, 206, 663–670. DOI: 10.1016/j.snb.2014.09.107.

    Article  CAS  Google Scholar 

  • Zhao, M. L., Yang, X. F., He, S. F., & Wang, L. P. (2009). A rhodamine-based Hg2+-selective fluorescent probe in aqueous solution. Chemical Papers, 63, 261–267. DOI: 10.2478/s11696–009–0016–8.

    Article  CAS  Google Scholar 

  • Zhao, X. H., Ma, Q. J., Zhang, X. B., Huang, B., Jiang, Q., Zhang, J., Shen, G. L., & Yu, R. Q. (2010). A highly selective fluorescent sensor for Cu2+ based on a covalently immobilized naphthalimide derivative. Analytical Sciences, 26, 585–590. DOI: 10.2116/analsci.26.585.

    Article  CAS  Google Scholar 

  • Zhao, L. Y., Wang, G. K., Chen, J. H., Zhang, L. M., Liu, B., Zhang, J. F., Zhao, Q. H., & Zhou, Y. (2014). 1,8-Naphthalimide-based visible colorimetric sensor for the selective sensing of fluoride, acetate and hydroxyl anions. Journal of Fluorine Chemistry, 158, 53–59. DOI: 10.1016/j.jfluchem.2013.11.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Lu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HL., Chen, CY., Zhang, H. et al. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination. Chem. Pap. 70, 685–694 (2016). https://doi.org/10.1515/chempap-2016-0006

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2016-0006

Keywords

Navigation