Skip to main content
Log in

A New Reactive 1,8-Naphthalimide Derivative for Highly Selective and Sensitive Detection of Hg2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A 1,8-naphthalimide derivative with a reactive aliphatic hydroxyl was designed and synthesized as a fluorescent probe. Its structure was characterized by IR, 1H NMR, 13C NMR, LC-MS and HPLC. The probe showed high selectivity and sensitivity to Hg2+ over other metal ions such as Pb2+, Na+, K+, Cd2+, Cr3+, Zn2+, Cu2+, Ni2+, Ca2+, Fe3+, Fe2+, Co2+, Mn2+ and Mg2+ in MeCN/H2O (15/85, v/v). The increase in fluorescence intensity was linearly proportional to the concentration of Hg2+ in the range of 18–40 μM with a detection limit of 1.38 × 10−7 mol/L. The probe could work in a pH span of 4.3–9.0 and respond to Hg2+ quickly with strong anti-interference ability. Job’s plot suggested a 1:2 complex of the probe and Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Scheme 4
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang QF, Li YW, Liu ZH, Chen QL (2016) Reproductive toxicity of inorganic mercury exposure in adult zebrafish: histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat Toxicol 177:417–424

    Article  CAS  PubMed  Google Scholar 

  2. Jatwani C, Gupta RK, Rai R, Bansal N (2016) Effects of Hg/Co toxicity in soil on biomolecules of earthworm, eisenia fetida. Procedia Environ Sci 35:450–455

    Article  CAS  Google Scholar 

  3. Dutta M, Das D (2012) Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. TrAC, trends anal. Chem 32:113–132

    CAS  Google Scholar 

  4. Jeong YS, Yoon JY (2012) Recent progress on fluorescent chemosensors for metal ions. Inorg Chim Acta 381:2–14

    Article  CAS  Google Scholar 

  5. Qian XH, Xu ZC (2015) Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev 44:4487–4493

    Article  CAS  PubMed  Google Scholar 

  6. Ozdemir M (2016) A rhodamine-based colorimetric and fluorescent probe for dual sensing of Cu2+ and Hg2+ ions. J Photochem Photobio A 318:7–13

    Article  CAS  Google Scholar 

  7. Liu WM, Chen JH, Xu LW, Wu JS, Xu HT, Zhang HY, Wang PF (2012) Reversible “off-on” fluorescent chemosensor for Hg2+ based on rhodamine derivative. Spectrochim. Acta Part A 85:38–42

    Article  CAS  Google Scholar 

  8. Li M, Jiang YH, Zhang D, Ding PG, Wang ZJ, Ye Y, Zhao YF (2014) A novel colorimetric and off-on fluorescent sensor for Hg2+ and its application in live cell imaging. J Lumin 148:219–224

    Article  CAS  Google Scholar 

  9. Li XT, Yin Y, Deng JJ, Zhong HX, Tang J, Chen Z, Yang LT, Ma LJ (2016a) A solvent-dependent fluorescent detection method for Fe3+ and Hg2+ based on a rhodamine B derivative. Talanta 154:329–334

    Article  CAS  PubMed  Google Scholar 

  10. Tharmaraj V, Pitchumani K (2012) An acyclic, dansyl based colorimetric and fluorescent chemosensor for Hg(II) via twisted intramolecular charge transfer (TICT). Anal Chim Acta 751:171–175

    Article  CAS  PubMed  Google Scholar 

  11. Kumar A, Kim HS (2015) N-(3-Imidazolyl)propyl dansylamide as a selective Hg2+ sensor in aqueous media through electron transfer. Spectrochim. Acta Part A 148:250–254

    Article  CAS  Google Scholar 

  12. Zhou S, Zhou ZQ, Zhao XX, Xiao YH, Xi G, Liu JT, Zhao BX (2015) A dansyl based fluorescence chemosensor for Hg2+ and its application in the complicated environment samples. Spectrochim. Acta Part A 148:348–354

    Article  CAS  Google Scholar 

  13. Wang K, Yang LX, Zhao C, Ma HM (2013) 4-(8-Quinolyl)amino-7-nitro-2,1,3-benzoxadiazole as a new colorimetric probe for rapid and visual detection of Hg2+. Spectrochim. Acta Part A 105:29–33

    Article  CAS  Google Scholar 

  14. Chebrolu LD, Thurakkal S, Balaraman HS, Danaboyina R (2014) Selective and dual naked eye detection of Cu2+ and Hg2+ ions using a simple quinoline-carbaldehyde chemosensor. Sens. Actuators B 204:480–488

    Article  CAS  Google Scholar 

  15. Ma WH, Xu Q, Du JJ, Song B, Peng XJ, Wang Z, Li GD, Wang XF (2010) A Hg2+-selective chemodosimeter based on desulfurization of coumarin thiosemicarbazide in aqueous media. Spectrochim. Acta Part A 76:248–252

    Article  Google Scholar 

  16. Yu SY, Wu SP (2014) A highly selective turn-on fluorescence chemosensor for Hg(II) and its application in living cell imaging. Sens. Actuators B 201:25–30

    Article  CAS  Google Scholar 

  17. Kao SL, Wu SP (2015) A fluorescent turn-on probe for Hg(II) based on an NTe2 chelating motif and its application in living cell imaging. Sens. Actuators B 212:382–388

    Article  CAS  Google Scholar 

  18. He T, Lin CL, Gu ZY, Xu LN, Yang AL, Liu YY, Fang HJ, Qiu HY, Zhang J, Yin SC (2016) Sensing behavior and logic operation of a colorimetric fluorescence sensor for Hg2+/Cu2+ ions. Spectrochim. Acta Part A 167:66–71

    Article  CAS  Google Scholar 

  19. Shen W, Wang L, Wu M, Bao XF (2016) A fluorescein derivative FLTC as a chemosensor for Hg2+ and Ag+ and its application in living-cell imaging. Inorganic Chem Commun 70:107–110

    Article  CAS  Google Scholar 

  20. Piyanuch P, Watpathomsub S, Lee VS, Nienaber HA, Wanichacheva N (2016) Highly sensitive and selective Hg2+-chemosensor based on dithia-cyclic fluorescein for optical and visual-eye detections in aqueous buffer solution. Sens. Actuators B 224:201–208

    Article  CAS  Google Scholar 

  21. Gong WT, Gao B, Zhao JZ, Ning GL (2013) Rational design of a reusable chemodosimeter for the selective detection of Hg2+. J Mater Chem A 1:5501–5504

    Article  CAS  Google Scholar 

  22. Zhang ZC, Wu D, Guo XF, Qian XH, Lu Z, Xu Q, Yang YY, Duan LP, He YK, Feng Z (2015a) Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol 18:1812–1820

    Google Scholar 

  23. Li CY, Xu F, Li YF, Zhou K, Zhou Y (2012) A fluorescent chemosensor for Hg2+ based on naphthalimide derivative by fluorescence enhancement in aqueous solution. Anal Chim Acta 717:122–126

    Article  CAS  PubMed  Google Scholar 

  24. Liu B, Tian H (2005) A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem Commun :3156–3158. doi:10.1039/b501913c

  25. Wanichacheva N, Prapawattanapol N, Lee VS, Grudpan K, Petsom A (2013) Hg2+-induced self-assembly of a naphthalimide derivative by selective “turn-on” monomer/excimer emissions. J Lumin 134:686–690

    Article  CAS  Google Scholar 

  26. Leng B, Zou L, Jiang JB, Tian H (2009) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sens. Actuators B 140:162–169

    Article  CAS  Google Scholar 

  27. Chen T, Zhu WP, Xu YF, Zhang SY, Zhang XJ, Qian XB (2010) A thioether-rich crown-based highly selective fluorescent sensor for Hg2+ and Ag+ in aqueous solution. Dalton Trans 39:1316–1320

    Article  CAS  PubMed  Google Scholar 

  28. Mu HL, Gong R, Ma Q, Sun YM, Fu EQ (2007) A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+. Tetrahedron Lett 48:5525–5529

    Article  CAS  Google Scholar 

  29. Hou C, Urbanec AM, Haishi Cao HS (2011) A rapid Hg2+ sensor based on aza-15-crown-5 ether functionalized 1,8-naphthalimide. Tetrahedron Lett 52:4903–4905

    Article  CAS  Google Scholar 

  30. Fang CL, Zhou J, Liu XJ, Cao ZH, Shangguan DH (2011) Mercury(II)-mediated formation of imide-Hg-imide complexes. Dalton Trans 40:899–903

    Article  CAS  PubMed  Google Scholar 

  31. Tian ZD, Liu YC, Tian BZ, Zhang JL (2015) The synthesis and fluorescence properties of novel 1,8-naphthalimide derivatives. Res Chem Intermed 41:1157–1169

    Article  CAS  Google Scholar 

  32. Zhou YM, Zhang JL, Zhang L, Zhang QY, Ma TS, Niu JY (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97:148–154

    Article  CAS  Google Scholar 

  33. Fang XX, Zhang SF, Zhao GY, Zhang WW, Xua JW, Ren AM, Wu CQ, Yang W (2014) The solvent-dependent binding modes of a rhodamine-azacrown based fluorescent probe for Al3+ and Fe3+. Dyes Pigments 101:58–66

    Article  CAS  Google Scholar 

  34. Li Y, Qiu YX, Zhang JJ, Zhu XY, Zhu B, Liu XY, Zhang XY, Zhang HX (2016b) Naphthalimide derived fluorescent probes with turn-on response for Au3+ and the application for biological visualization. Biosens Bioelectron 83:334–338

    Article  CAS  PubMed  Google Scholar 

  35. Dodangeh M, Gharanjig K, Arami M (2016) A novel Ag+ cation sensor based on polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives. Spectrochim. Acta Part A 154:207–214

    Article  CAS  Google Scholar 

  36. Zhang ZY, Lu SZ, Sha CM, Xu DM (2015b) A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions: Fe3+, Pb2+, and Hg2+. Sens. Actuators B 208:258–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21074085), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhua Chen or Dongmei Xu.

Electronic supplementary material

ESM 1

(DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Chen, Y., Tang, T. et al. A New Reactive 1,8-Naphthalimide Derivative for Highly Selective and Sensitive Detection of Hg2+ . J Fluoresc 27, 1285–1292 (2017). https://doi.org/10.1007/s10895-017-2061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2061-y

Keywords

Navigation