Skip to main content
Log in

Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide: Structure and EPR spectra

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Nicotinamide was employed as a supramolecular reagent in the synthesis of six new copper(II) bromo-, iodo-, fluoro- and dibromobenzoate complexes. Structures of [Cu(2-Brbz)2(nia)2(H2O)2] (I), [Cu(2-Ibz)2(nia)2(H2O)2] (II), [Cu(2-Fbz)2(nia)2(H2O)2] (III), [Cu(4-Brbz)2(nia)2(H2O)2] (IV), [Cu(3,5-Br2bz)2(nia)2(H2O)2] (V), [Cu(F-Fbz)2(nia)2(H2O)] · H2O (VI) (nia = nicotinamide, 2-Brbz = 2-bromobenzoate, 4-Brbz = 4-bromobenzoate, 3,5-Br2bz = 3,5-dibromobenzoate, 2-Ibz = 2-iodobenzoate, 2-Fbz = 2-fluorobenzoate, 4-Fbz = 4-fluorobenzoate) were determined using X-ray analysis. Compound [Cu(2-Brbz)2(nia)2] · 2H2O (VII) was prepared by a new method and also characterized by X-ray powder diffraction and EPR spectroscopy. Compounds I–V are monomeric complexes with a square-bipyramidal coordination sphere around the Cu2+ ion. Complex VI is monomeric with coordination environment around the Cu2+ ion of a tetragonal-pyramid. Complexes I and VII present examples of coordination isomerism. Molecules of all compounds are connected by N—H⋯O and O—H⋯O hydrogen bonds from the NH2 groups of nicotinamide and water molecules which create supramolecular hydrogen-bonding-coordination chains and networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aakeröy, C. B., Schultheiss, N., & Desper, J. (2005). Directed supramolecular assembly of infinite 1-D M(II)-containing chains (M = Cu, Co, Ni) using structurally bifunctional ligands. Inorganic Chemistry, 44, 4983–4991. DOI: 10.1021/ic048405y.

    Article  Google Scholar 

  • Aakeröy, C. B., Desper, J., Levin, B., & Valdés-Martínez, J. (2006). Robust building blocks for inorganic crystal engineering. Inorganica Chimica Acta, 359, 1255–1262. DOI: 10.1016/j.ica.2005.09.051.

    Article  Google Scholar 

  • Aakeröy, C. B., Scott, B. M. T., Smith, M. M., Urbina, J. F., & Desper, J. (2009). Establishing amide⋯amide reliability and synthon transferability in the supramolecular assembly of metal-containing one-dimensional architectures. Inorganic Chemistry, 48, 4052–4061. DOI: 10.1021/ic801992t.

    Article  Google Scholar 

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verchoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[l,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, 1984, 1349–1356. DOI: 10.1039/dt9840001349.

    Article  Google Scholar 

  • Arıcı, M., Yeşilel, O. Z., SŞhin, O., & Büyükgüngör, O. (2014). Two dimensional coordination polymers with 3,3-thiodipropionate: An unprecedented coordination mode and strong hydrogen-bond network. Polyhedron, 67, 456–463. DOI: 10.1016/j.poly.2013.09.040.

    Article  Google Scholar 

  • Beatty, A. M. (2001). Hydrogen bonded networks of coordination complexes. CrystEngComm, 3, 243–255. DOI: 10.1039/b109127c.

    Article  Google Scholar 

  • Beatty, A. M. (2003). Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coordination Chemistry Reviews, 246, 131–143. DOI: 10.1016/s0010-8545(03)00120-6.

    Article  CAS  Google Scholar 

  • Beobide, G., Castillo, O., Cepeda, J., Luque, A., Pérez-Yáñez, S., Román, P., & Thomas-Gipson, J. (2013). Metalcarboxylato-nucleobase systems: From supramolecular assemblies to 3D porous materials. Coordination Chemistry Reviews, 257, 2716–2736. DOI: 10.1016/j.ccr.2013.03.011.

    Article  CAS  Google Scholar 

  • Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N. L. (1995). Patterns in hydrogen bonding: Functionality and graph set analysis in crystals. Angewandte Chemie Internation Edition in English, 34, 1555–1573. DOI: 10.1002/anie.199515551.

    Article  CAS  Google Scholar 

  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., & Watkin, D. J. (2003). CRYSTALS version 12: software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487. DOI: 10.1107/s0021889803021800.

    Article  CAS  Google Scholar 

  • Boultif, A., & Lour, D. (2004). Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724–731. DOI: 10.1107/s0021889804014876.

    Article  CAS  Google Scholar 

  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori G., & Spagna, R. (2012). SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357–361. DOI: 10.1107/s0021889812001124.

    Article  CAS  Google Scholar 

  • Ɖaković, M., Popović, Z., Giester, G., & Rajić-Linarić, M. (2008). Synthesis, spectroscopic and structural investigation of Zn(NCS)2(nicotinamide)2 and [Hg(SCN)2(nicotinamide)]n. Polyhedron, 27, 465–472. DOI: 10.1016/j.poly.2007.09.036.

    Article  Google Scholar 

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341. DOI: 10.1107/s0021889808042726.

    Article  CAS  Google Scholar 

  • Favre-Nicolin, V., & Černý, R. (2002). FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. Journal of Applied Crystallography, 35, 734–743. DOI: 10.1107/s0021889802015236.

    Article  CAS  Google Scholar 

  • Friš čić, T., Meštrović, E., Šklaec Šamec, D., Kaitner, B., & Fábián, L. (2009). One-pot mechanosynthesis with three levels of molecular self-assembly: Coordination bonds, hydrogen bonds and host-guest inclusion. Chemistry — A European Journal, 15, 12644–12652. DOI: 10.1002/chem.200901058.

    Article  Google Scholar 

  • Gör, K., Kürkçüoğlu, G. S., Yeşilel, O. Z., & Büyükgüngör, O. (2014). One-dimensional bimetallic cyano complexes with nicotinamide and isonicotinamide ligands. Journal of Molecular Structure, 1060, 166–175. DOI: 10.1016/j.molstruc.2013.12.024.

    Article  Google Scholar 

  • Halaška, J., Pevec, A., Strauch, P., Kozlevčar, B., Koman, M., & Moncol, J. (2013). Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide: Structure and EPR. Polyhedron, 61, 20–26. DOI: 10.1016/j.poly.2013.05.032.

    Article  Google Scholar 

  • James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32, 276–288. DOI: 10.1039/b200393g.

    Article  CAS  Google Scholar 

  • Janiak, C. (2000). A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 2000, 3885–3896. DOI: 10.1039/b003010o.

    Article  Google Scholar 

  • Janiak, C. (2003). Engineering coordination polymers towards applications. Dalton Transactions, 2003, 2781–2804. DOI: 10.1039/b305705b.

    Article  Google Scholar 

  • Kitagawa, S., & Uemura, K. (2005). Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chemical Society Reviews, 34, 109–119. DOI: 10.1039/b313997m.

    Article  CAS  Google Scholar 

  • Koksharova, T. V., Gritsenko, I. S., & Stoyanova, I. V. (2007). Coordination compounds of 3d-metal valerates and benzoates with nicotinamide. Russian Journal of General Chemistry, 77, 1635–1642. DOI: 10.1134/s107036320709023x.

    Article  CAS  Google Scholar 

  • Kose, D. A., Necefoğlu, H., SŞhin, O., & Büyükgüngör, O. (2011). Synthesis, spectral, thermal and structural study of monoaquabis(acetylsalicylato-κO)bis(nicotinamide-κN)copper(II). Journal of Chemical Crystallography, 41, 297–305. DOI: 10.1007/s10870-010-9876-6.

    Article  CAS  Google Scholar 

  • Lever, A. B. P. (1984). Inorganic electronic spectroscopy (2nd ed.) (Series: Studies in physical and theoretical chemistry, Vol. 33). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Ma, Z., & Moulton, B. (2007a). Mixed-ligand coordination species: A promising approach for “second-generation” drug development. Crystal Growth & Design, 7, 196–198. DOI: 10.1021/cg060602f.

    Article  CAS  Google Scholar 

  • Ma, Z., & Moulton, B. (2007b). Supramolecular medicinal chemistry: Mixed-ligand coordination complexes. Molecular Pharmaceutics, 4, 373–385. DOI: 10.1021/mp070013k.

    Article  CAS  Google Scholar 

  • Moncol, J., Maroszova, J., Koman, M., Melnik, M., Valko, M., Mazur, M., & Lis, T. (2008). Self-assembly of hydrogen-bonded supramolecular structures of two copper(II) 2-bromobenzoate complexes with 4-pyridylmethanol and nicotinamide. Journal of Coordination Chemistry, 61, 3740–3752. DOI: 10.1080/00958970802146031.

    Article  CAS  Google Scholar 

  • Moncol, J., Kuchtanin, V., Polakovičová, P., Mroziński, J., Kalińska, B., Koman, M., Padělková, Z., Segľa, P., & Melník, M. (2012). Study of copper(II) thiophenecarboxylate complexes with nicotinamide. Polyhedron, 45, 94–102. DOI: 10.1016/j.poly.2012.07.069.

    Article  CAS  Google Scholar 

  • Nakamoto, K. (1997). Infrared and Raman spectra of inorganic and coordination compounds (5th ed.) (Part B: Applications in coordination, organometallic, and bioinorganic chemistry, pp. 23, 56, 79). Chichester, UK: Wiley.

    Google Scholar 

  • Pasán, J., Sanchiz, J., Lloret, F., Julve, M., & Ruiz-Pérez, C. (2011). Copper(II)-phenylmalonate complexes with the bi-functional ligands nicotinamide and isonicotinamide. Polyhedron, 30, 2451–2458. DOI: 10.1016/j.poly.2011.06.006.

    Article  Google Scholar 

  • Perec, M., Baggio, R. F., Peña, O., Sartoris, R. P., & Calvo, R. (2011). Synthesis and structures of four new compounds of the copper(II)-carboxylate-pyridinecarboxamide system. Inorganica Chimica Acta, 373, 117–123. DOI: 10.1016/j.ica.2011.03.065.

    Article  CAS  Google Scholar 

  • Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic computing system JANA2006: General features. Zeitschrift für Kristallographie — Crystalline Materials, 229, 345–352. DOI: 10.1515/zkri-2014-1737.

    Google Scholar 

  • Shan, N., Hawxwell, S. M., Adams, H., Brammer, L., & Thomas, J. A. (2008). Self-assembly of electriactive thiacrown ruthenium(II) complexes into hydrogen-bonded chain and tape networks. Inorganic Chemistry, 47, 11551–11560. DOI: 10.1021/ic8007359.

    Article  CAS  Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/s0108767307043930.

    Google Scholar 

  • Sheldrick, G. M. (2015a). SHELXT — Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, A71, 3–8. DOI: 10.1107/s2053273314026370.

    Article  Google Scholar 

  • Sheldrick, G. M. (2015b). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, C71, 3–8. DOI: 10.1107/s2053229614024218.

    Google Scholar 

  • Smart, P., Bejarano-Villafuerte, A., & Brammer, L. (2013). Coordination chemistry meets halogen bonding and hydrogen bonding: building networks from 3-iodobenzoate paddlewheel units [Cu2(3-Ibz)4(L)2]. CrystEngComm, 15, 3151–3159. DOI: 10.1039/c3ce26890j.

    Article  CAS  Google Scholar 

  • Spek, A. L. (2015). PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallographica Section C, C71, 9–18. DOI: 10.1107/s2053229614024929.

    Google Scholar 

  • Stachová, P., Melník, M., Korabik, M., Mrozinski, J., Koman, M., Glowiak, T., & Valigura, D. (2007). Synthesis, spectral and magnetical characterization of monomeric [Cu(2-NO2bz)2(nia)2(H2O)2] and structural analysis of similar [Cu(RCOO)2(L-N)2(H2O)2] complexes. Inorganica Chimica Acta, 360, 1517–1522. DOI: 10.1016/j.ica.2006.08.019.

    Article  Google Scholar 

  • Xue, J., Hua, X., Yang, L., Li, W., Xu, Y., Zhao, G., Zhang, G., Liu, L., Liu, K., Chen, J., & Wu, J. (2014). Cobalt(II) and strontium(II) complexes of three isomers, nicotinamide, isonicotinamide and picolinamide. Journal of Molecular Structure, 1059, 108–117. DOI: 10.1016/j.molstruc.2013.11.001.

    Article  CAS  Google Scholar 

  • Valigura, D., Moncol, J., Korabik, M., Púčeková, Z., Lis, T., Mroziński, M., & Melník, M. (2006). New dimeric copper(II) complex [Cu(5-MeOsal)2(μ-nia)(H2O)]2 with magnetic exchange interactions through H-bonds. European Journal of Inorganic Chemistry, 2006, 3813–3817. DOI: 10.1002/ejic.200600477.

    Article  Google Scholar 

  • Vasková, Z., Moncol, J., Korabik, M., Valigura, D., Švorec, J., Lis, T., Valko, M., & Melník, M. (2010). Supramolecular dimer formation through hydrogen bond extensions of carboxylate ligands — Path for magnetic exchange. Polyhedron, 29, 154–163. DOI: 10.1016/j.poly.2009.06.056.

    Article  Google Scholar 

  • Vasková, Z., Kitanovski, N., Jagličić, Z., Strauch, P., Růžičková, Z., Valigura, D., Koman, M., Kozlevčar, B., & Moncol, J. (2014). Synthesis and magneto-structural characterization of copper(II) nitrobenzoate complexes containing nicotinamide or methylnicotinamide ligands. Polyhedron, 81, 555–563. DOI: 10.1016/j.poly.2014.07.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Moncol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halaška, J., Čechová, D., Lawson, M.K. et al. Self-assembly hydrogen-bonded supramolecular arrays from copper(II) halogenobenzoates with nicotinamide: Structure and EPR spectra. Chem. Pap. 70, 101–113 (2016). https://doi.org/10.1515/chempap-2015-0203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0203

Keywords

Navigation