Skip to main content
Log in

Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The subject of this paper was to study the effect of rapid batch decompression on hydrolysate quality and on biogas yield after the hydrothermal pretreatment of wheat straw. An aqueous batch containing 5 mass % total solids of wheat straw was thermally and thermally-expansionary treated in parallel at the process temperature of 170–200°C and the residence time of 0–60 min. An analysis of the thermal and thermal-expansionary hydrolysate provided identical results in the dependences and values of chemical oxygen demand, acidities, and glucose yields of both treatments based on severity factors including the combined effects of temperature and residence time. Increases in the methane content of 33 % for thermally and of 34 % for thermally-expansionary treated wheat straw were reached in comparison to the methane yield from an untreated sample. This means that the polysaccharide cell wall was dissolved because of the high process temperature and residence time. From this it follows that all its nutrients were subsequently washed out of the cell into liquid where they caused changes in its chemical oxygen demand, glucose content, and acidities. There was therefore no rapid decompression effect on the hydrothermally treated wheat straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvira, P., Tomás-Pejó, E., Balesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101, 4851–4861. DOI: 10.1016/j.biortech.2009.11.093.

    Article  CAS  Google Scholar 

  • Caparrós, S., Ariza, J., López, F., Nacimiento, J. A., Garrote, G., & Jiménez, L. (2008). Hydrothermal treatment and ethanol pulping of sunflower stalks. Bioresource Technology, 99, 1368–1372. DOI: 10.1016/j.biortech.2007.01.045.

    Article  Google Scholar 

  • Carvalheiro, F., Silva-Fernandes, T., Duarte, L. C., & Gírio, F. M. (2009). Wheat straw autohydrolysis: Process optimization and products characterization. Applied Biochemistry and Biotechnology, 153, 84–93. DOI: 10.1007/s12010-008-8448-0.

    Article  CAS  Google Scholar 

  • Díaz, M. J., Cara, C., Ruiz, E., Romero, I., Moya, M., & Castro, E. (2010). Hydrothemal pre-treatment of rape-seed straw. Bioresource Technology, 101, 2428–2435. DOI: 10.1016/j.biortech.2009.10.085.

    Article  Google Scholar 

  • Fernández-Cegrí, V., De la Rubia, M. Á., Raposo, F., & Borja, R. (2012). Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresource Technology, 123, 424–429. DOI: 10.1016/j.biortech.2012.07.111.

    Article  Google Scholar 

  • Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101, 4775–4800. DOI: 10.1016/j.biortech.2010.01.088.

    Article  Google Scholar 

  • Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18. DOI: 10.1016/j.biortech.2008.05.027.

    Article  CAS  Google Scholar 

  • ISO (2013). Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method. ISO 15705. International Organization for Standardization, Geneva, Switzerland.

    Google Scholar 

  • Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 98, 2034–2042. DOI: 10.1016/j.biortech.2006.08.006.

    Article  CAS  Google Scholar 

  • Kim, D. S., Myint, A. A., Lee, H. W., Yoon, J. H., & Lee, Y. W. (2013). Evaluation of hot compressed water pretreatment and enzymatic saccharification of tulip tree sawdust using severity factors. Bioresource Technology, 144, 460–466. DOI: 10.1016/j.biortech.2013.06.071.

    Article  CAS  Google Scholar 

  • Knez, Ž., Markočič, E., Knez Hrnčič, M., Ravber, M., & Škerget, M. (2015). High pressure water reforming of biomass for energy and chemicals: A short review. The Journal of Super-critical Fluids, 96, 46–52. DOI: 10.1016/j.supflu.2014.06.008.

    Article  CAS  Google Scholar 

  • Kratky, L., & Jirout, T. (2015). The effect of process parameters during the thermal-expansionary pretreatment of wheat straw on hydrolysate quality and on biogas yield. Renewable Energy, 77, 250–258. DOI: 10.1016/j.renene.2014.12.026.

    Article  CAS  Google Scholar 

  • Merali, Z., Ho, J. D., Collins, S. R. A., Le Gall, G., Elliston, A., Käsper, A., & Waldron, K. W. (2013). Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresource Technology, 131, 226–234. DOI: 10.1016/j.biortech.2012.12.023.

    Article  CAS  Google Scholar 

  • Murakami, K., Kasai, K., Kato, T., & Sugawara, K. (2012). Conversion of rice straw into valuable products by hydrothermal treatment and steam gasification. Fuel, 93, 37–43. DOI: 10.1016/j.fuel.2011.09.050.

    Article  CAS  Google Scholar 

  • Østergaard Petersen, M., Larsen, J., & Hedegaard Thomsen, M. (2009). Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy, 33, 834–840. DOI: 10.1016/j.biombioe.2009.01.004.

    Article  Google Scholar 

  • Overend, R. P., Chornet, E., & Gascoine, J. A. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 321, 523–536. DOI: 10.1098/rsta.1987.0029.

    Article  CAS  Google Scholar 

  • Pavlovič, I., Knez, Ž., & Škerget, M. (2013). Hydrothermal reactions of agricultural and food processing wastes in suband supercritical water: A review of fundamentals, mechanisms and state of research. Journal of Agriculture and Food Chemistry, 61, 8003–8025. DOI: 10.1021/jf401008a.

    Article  Google Scholar 

  • Pérez, J. A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M. J., & Manzanares, P. (2008). Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 87, 3640–3647. DOI: 10.1016/j.fuel.2008.06.009.

    Article  Google Scholar 

  • Ruiz, H. A., Rodríguez-Jasso, R. M., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2013). Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainaible Energy Reviews, 21, 35–51. DOI: 10.1016/j.rser.2012.11.069.

    Article  CAS  Google Scholar 

  • Singh, R., Shukla, A., Tiwari, S., & Srivastava, M. (2014). A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renewable and Sustainable Energy Reviews, 32, 713–728. DOI: 10.1016/j.rser.2014.01.051.

    Article  CAS  Google Scholar 

  • Sukhbaatar, B., Hassan, E. B., Kim, M., Steele, P., & Ingram, L. (2014). Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydrate Polymers, 101, 196–202. DOI: 10.1016/j.carbpol.2013.09.027.

    Article  CAS  Google Scholar 

  • Šulc, R., & Krátký, L. (2013). Characterization of wheat straw pretreatment by thermo-gravimetric method. Inzynieria i Aparatura Chemiczna, 3, 264–265.

    Google Scholar 

  • Talebnia, F., Karakashev, D., & Angelidaki, I. (2010). Production of bioethanol from wheat straw: An overview on pre-treatment, hydrolysis and fermentation. Bioresource Technology, 101, 4744–4753. DOI: 10.1016/j.biortech.2009.11.080.

    Article  CAS  Google Scholar 

  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36, 2328–2342. DOI: 10.1016/j.energy.2011.03.013.

    Article  CAS  Google Scholar 

  • Verein Deutscher Ingenieure (2006). VDI 4630: Fermentation of organic materials, characterisation of the substrates, sampling, collection of material data, fermentation tests. In VDI Handbuch Energietechnik, Berlin, Germany: Beuth Verlag.

    Google Scholar 

  • Wyman, C. E. (2013). Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Xiao, L. P., Sun, Z. J., Shi, Z. J., Xu, F., & Sun, R. C. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. BioResources, 6, 1576–1598.

    CAS  Google Scholar 

  • Yan, Q. Q., & Modigell, M. (2012). Mechanical pretreatment of lignocellulosic biomass using a screw press as an essential step in the biofuel production. Chemical Engineering Transactions, 29, 601–606. DOI: 10.3303/cet1229101.

    Google Scholar 

  • Zakaria, M. R., Hirata, S., & Hassan, M. A. (2015). Hydrothermal pretreatment enhanced enzymatic hydrolysis and glucose production from oil palm biomass. Bioresource Technology, 176, 142–148. DOI: 10.1016/j.biortech.2014.11.027.

    Article  CAS  Google Scholar 

  • Zhao, X. B., Zhang, L. H., & Liu, D. H. (2012). Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts & Biorefining, 6, 465–482. DOI: 10.1002/bbb.1331.

    Article  CAS  Google Scholar 

  • Ziemiński, K., Romanowska, I., Kowalska-Wentel, M., & Cyran, M. (2014). Effects of hydrothermal pretreatment of sugar beet pulp for methane production. Bioresource Technology, 166, 187–193. DOI: 10.1016/j.biortech.2014.05.021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Krátký.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krátký, L., Jirout, T. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw. Chem. Pap. 69, 1563–1572 (2015). https://doi.org/10.1515/chempap-2015-0188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0188

Keywords

Navigation