Skip to main content
Log in

Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Rehmanniae glutinosa, an important medical plant in China, has distinct regional characteristics. It has long suffered from consecutive monoculture obstacles, resulting in severe reduction of quality and yield. The microbial community is believed to play an important role in the monoculture process. However, there are no reports on how microbial compositions change in response to growth of R. glutinosa. In this study, quantitative real-time PCR and metagenomic high throughput sequencing methods were applied for the first time to elucidate the rhizosphere microbial community variation during growth and consecutive monoculture of R. glutinosa. The results indicated that with the first- and second-year cultivated process, the bacterial and fungal populations varied dramatically in rhizosphere soil, and the microbial balance was severely altered. Some probiotic bacteria (e.g., Actinomycetes), obviously decreased in abundance with consecutive monoculture and the abundances of some pathogenic fungi (e.g., Alternaria) were obviously higher in the second-year cultivation than that in the first-year cultivation. In addition, we also found that microbial imbalance was tightly coupled with decreased soil pH and reductions in a series of soil enzyme activities. All these changes could be responsible for consecutive monoculture obstacles of R. glutinosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bainard L.D., Koch A.M., Gordon A.M. & Klironomos J.N. 2013. Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363: 345–356.

    Article  CAS  Google Scholar 

  • Burns R.G., DeForest J.L., Marxsen J., Sinsabaughd R.L., Strombergere M.E., Wallensteinf M.D., Weintraubg M.N. & Zoppinih A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 58: 216–234.

    Article  CAS  Google Scholar 

  • Chen Z.Z., Yin Q.Y., Wang X.M. & Zou Y.J. 1997. Primary study on dynamics of soil microorganisms under soybean continuous cropping. Agr. Sci. China 30: 96.

    Google Scholar 

  • Du J.F., Yin W.J., Zhang Z.Y., Hou J., Huang J. & Li J. 2009. Autotoxicity and phenolic acids content in soils with different planting interval years of Rehmannia glutinosa. Chinese J. Ecol. 48: 445–450. (In Chinese)

    Google Scholar 

  • Ehrenfeld J.G., Ravit B. & Elgersma K. 2005. Feedback in the plant-soil system. Annu. Rev. Env. Resour. 30: 75–115.

    Article  Google Scholar 

  • El-Refai H.A., AbdElRahman H.Y., Abdulla H., Hanna A.G., Hashem A.H., El-Refai A.H., & Ahmed E.M. 2011. Studies on the production of actinomycin by Nocardioides luteus, a novel source. Curr. Trends Biotech. Pharm. 5: 1282–1297.

    CAS  Google Scholar 

  • Feng Y.Z., Grogan P., Caporaso J.G., Zhang H.Y., Lin X.G., Knight R. & Chu H.Y. 2014. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biol. Biochem. 74: 193–200.

    Article  CAS  Google Scholar 

  • Frankenberger W.T. & Johanson J.B. 1983. Method of measuring invertase activity in soils. Plant Soil 74: 301–311.

    Article  CAS  Google Scholar 

  • Goudjal Y., Zamoum M., Meklat A., Sabaou N., Mathieu F. & Zitouni A. 2016. Plant-growth-promoting potential of endosymbiotic actinobacteria isolated from sand truffles ( Terfezio, leonis Tul.) of the Algerian Sahara. Ann. Microbiol. 66: 91–100.

    Article  CAS  Google Scholar 

  • Griffiths R.I., Thomson B.C., James P., Bell T., Bailey M. & Whiteley A.S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13: 1642–1654.

    Google Scholar 

  • Guan S.M. 1986. Soil Enzyme and the Methods about the Study of Soil Enzyme. China Agriculture Press, Beijing.

    Google Scholar 

  • Hao D.C., Song S.M., Mu J., Hu W.L. & Xiao P.G. 2016. Unearthing microbial diversity of Taxus rhizosphere via MiSeq highthroughput amplicon sequencing and isolate characterization. Sci. Rep. 6: 22006.

    Article  CAS  Google Scholar 

  • Huang L.F., Song L.X., Xia X.J., Mao W.H. Shi K., Zhou Y.H. & Yu J.Q. 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39: 232–242.

    Article  CAS  Google Scholar 

  • Kaiser C., Koranda M., Kitzler B., Fuchsleuger L., Schnecker J., Steiger P., Rasche F., Zechtmeister-Boltenstern S., Sessitsch A. & Richter A. 2010. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187: 843–858.

    Article  CAS  Google Scholar 

  • Kulichevskaya L.S., Suzina N.E., Liesack W. & Dedysh S.N. 2010. Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Aci-dobacteria. IJSEM 60: 301–306.

    PubMed  Google Scholar 

  • Lauber C.L., Strickland M.S., Bradford M.A. & Fierera N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40: 2407–2415.

    Article  CAS  Google Scholar 

  • Lauber C.L., Hamady M., Knight R. & Noan F. 2009. Pyrose-quencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 75: 5111–5120.

    Article  CAS  Google Scholar 

  • Li P.D., Dai C.C., Wang X.X., Zhang T.T. & Chen Y. 2012. Variation of soil enzyme activities and microbial community structure in peanut monocropping system in subtropical China. Afr. J. Agrl. Res. 7: 1870–1879.

    Google Scholar 

  • Li Z.F., Yang Y.Q., Xie D.F., Zhu L.F., Zhang Z.G., & Lin W.X. 2012. Identification of autotoxic compounds in fibrous roots of Rehmanniae (Rehmanniae a Libosch.). PLoS One 7: e28806.

    Article  CAS  Google Scholar 

  • Li X.Z., Rui J.P., Mao Y.J., Yannarel A. & Mackie R. 2014. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol. Biochem. 68: 392–401.

    Article  CAS  Google Scholar 

  • Lim D.J., Yun S.J., Chung I.M. & Chang Y.Y. 2005. Resveratrol synthase transgene expression and accumulation of resveratrol glycoside in Rehmanniae. Mol. Breeding 16: 219–233.

    Article  CAS  Google Scholar 

  • Lu R.K. 2000. Analytical Methods on Agrochemical Properties of Soil. China Agricultural Science & Technology Press, Beijing.

    Google Scholar 

  • Meriles J.M., Gil S.V., Conforto C., Figoni G., Lovera E., March G.J. & Guzmán C.A. 2009. Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Till. Res. 103: 271–281.

    Article  Google Scholar 

  • Nannipieri P., Ceccanti B. & Cervelli P.S. 1974. Sequi Use of pyrophosphate to extract urease from a podzol. Soil Biol. Biochem. 6: 359–362.

    Article  CAS  Google Scholar 

  • Nielsen U.N., Osler Graham H.R. & Campbell C.D. 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J. Biogeogr. 37: 1317–1328.

    Article  Google Scholar 

  • Qin G.Z. & Tian S.P. 2004. Biocontrol of postharvest diseases of Jujube Fruit by Cryptococcus laurentii combined with a low dosage of fungicides under different storage conditions. Plant Dis. 88: 497–501.

    Article  Google Scholar 

  • Qu X.H. & Wang J.G. 2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl. Soil Ecol. 39: 172–179.

    Article  Google Scholar 

  • Sláviková E., Vadkertiová R. & Vránová D. 2007. Yeasts colonizing the leaf surfaces. J. Basic Microb. 47: 344–350.

    Article  Google Scholar 

  • Ter Braak C.J.F. 1986. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • van Overbeek L. & van Elsas J.D. 2008. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol. Ecol. 64: 283–296.

    Article  Google Scholar 

  • Wu L.K., Wang H.B., Zhang Z.X. Lin R., Zhang Z.Y. & Lin W.X. 2011. Comparative metaproteomic analysis on consecutively Rehmanniaea-monocultured rhizosphere soil. PLoS One 6: e20611.

    Article  CAS  Google Scholar 

  • Wu L., Li Z., Li J., Khan M.A., Huang W.M. Zhang Z.Y. & Lin W.X. 2013. Assessment of shifts in microbial community structure and catabolic diversity in response to Rehmannia glutinosa monoculture. Appl. Soil Ecol. 67: 1–9.

    Article  Google Scholar 

  • Xu Y.X., Wang G.H., Jin J., Liu J.J., Zhang Q.Y. & Liu X.B. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol. Biochem. 41: 919–925.

    Article  CAS  Google Scholar 

  • Yang Q.X., Wang J., Wang H.T., Chen X.Y., Ren S.W., Li X.L., Xu Y., Zhang H. & Li X.M. 2012. Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresource Technol. 117: 155–163.

    Article  CAS  Google Scholar 

  • Yurkov A.M., Kemler M. & Begerow D. 2012. Assessment of yeast diversity in soils under different management regimes. Fungal Ecol. 5: 24–35.

    Article  Google Scholar 

  • Zhang R.X., Li M.X. & Jia Z.P. 2008. Rehmanniaea: review of botany, chemistry and pharmacology. J. Ethnopharmacol. 117: 199–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiang Yang.

Supplemental data

11756_2016_71121320_MOESM1_ESM.pdf

Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Wang, R., Xu, Y. et al. Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa. Biologia 71, 1320–1329 (2016). https://doi.org/10.1515/biolog-2016-0161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0161

Key words

Navigation