Skip to main content
Log in

A broad host range food-grade cloning vector for lactic acid bacteria

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The genetic modification of lactic acid bacteria being used in medicine and food industries has been limited due to the scarcity of food-grade cloning vectors for the bacteria. The 4.46-kb food-grade cloning vector pUBU constructed in this study consisted of 3 major components from food-approved organisms, the theta-type replicon from pUCL287 of Tetragenococcus halophilus, the lactococcal cadmium resistance (Cdr) determinant from pND918 and the promoter of L-lactate dehydrogenase (ldhL) gene from Lactobacillus plantarum. The Cdr determinant was used as a dominant selectable marker and the ldhL promoter, a strong constitutive promoter, was used to drive the expression of inserted genes. The newly constructed vector was able to transform several genera of lactic acid bacteria and stable in the bacteria under non-selective pressure for at least 100 generations. In addition, it allowed inserted genes to express in lactic acid bacteria under the control of ldhL promoter. The host range of pUBU extended to Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Tetragenococcus. These results suggest that pUBU is a potential food-grade cloning vector for genetic modification of a wide range of lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cdr:

lactococcal cadmium resistance

gfpuv:

gene for a green fluorescence protein variant

GFPuv:

a green fluorescence protein variant

GRAS:

generally regarded as safe

ldhL:

L-lactate dehydrogenase gene

MCS:

multiple cloning site

MRS:

deMan Rogosa Sharpe

References

  • Allison G.E. & Klaenhammer T.R. 1996. Functional analysis of the gene encoding immunity to lactacin F. lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl. Environ. Microbiol. 62: 4450–4460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson D.G. & McKay L.L. 1983. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol. 46: 549–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benachour A., Frere J., Flahaut S., Novel G. & Auffray Y. 1997. Molecular analysis of the replication region of the thetareplicating plasmid pUCL287 from Tetragenococcus (Pediococcus) halophilus ATCC33315. Mol. Gen. Genet. 255: 504–513

    Article  CAS  PubMed  Google Scholar 

  • Benachour A., Frere J. & Novel G. 1995. pUCL287 plasmid from Tetragenococcus halophila (Pediococcus halophilus) ATCC 33315 represents a new theta-type replicon family of lactic acid bacteria. FEMS Microbiol. Lett. 128: 167–175

    Article  CAS  PubMed  Google Scholar 

  • Birnboim H.C. & Doly J. 1979. A rapid alkaline lysis method procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bor Y.C., Moraes C., Lee S.P., Crosby W.L., Sinskey A.J. & Batt C.A. 1992. Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene 114: 127–132

    Article  CAS  PubMed  Google Scholar 

  • Brede D.A., Lothe S., Salehian Z., Faye T. & Nes I.F. 2007. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii. Appl. Environ. Microbiol. 73: 7542–7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bron P.A., Benchimol M.G., Lambert J., Palumbo E., Deghorain M., Delcour J., De Vos W.M., Kleerebezem M. & Hols P. 2002. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 68: 5663–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bron P.A., Hoffer S.M., Van Swam I.I., De Vos W.M. & Kleerebezem M. 2004. Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl. Environ. Microbiol. 70: 310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr F.J., Chill D. & Maida N. 2002. The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28: 281–370

    Article  CAS  PubMed  Google Scholar 

  • De Vos W.M. 1999. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int. Dairy J. 9: 3–10

    Article  Google Scholar 

  • Endo G. & Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177: 4437–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froseth B.R. & McKay L.L. 1991. Development and application of pMF011 as a possible food-grade cloning vector. J. Dairy Sci. 74: 1445–1453

    Article  CAS  Google Scholar 

  • Fu X. & Xu J.G. 2000. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Microbiol. Immunol. 44: 551–556

    Article  CAS  PubMed  Google Scholar 

  • Geoffroy M.C., Guyard C., Quatannens B., Pavan S., Lange M. & Mercenier A. 2000. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl. Environ. Microbiol. 66: 383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraffa G., Chanishvili N., & Widyastuti Y. 2010. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 161: 480–487

    Article  PubMed  Google Scholar 

  • Green M.R. & Sambrook J. 2012. Molecular Cloning: A Laboratory Manual. 4th Edition. Cold Spring Harbor Laboratory Press, New York, 1890 pp.

    Google Scholar 

  • He S., Gong F., Guo Y. & Zhang D. 2012. Food-grade selection markers in lactic acid bacteria. TAF Prev. Med. Bull. 11: 499–510

    Google Scholar 

  • Hughes B.F. & McKay L.L. 1992. Deriving phage-insensitive lac-tococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75: 914–923

    Article  Google Scholar 

  • Liu C.Q., Charoechai P., Khunajakr N., Deng Y.M., Widodo & Dunn N.W. 2002. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 297: 241–247

    Article  CAS  PubMed  Google Scholar 

  • Liu C.Q., Khunajakr N., Chia L.G., Deng Y.M., Charoenchai P. & Dunn N.W. 1997. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79–90

    Article  PubMed  Google Scholar 

  • Liu C.Q., Su P., Khunajakr N., Deng Y.M., Sumual S., Kim W.S., Tandianus J.E. & Dunn N.W. 2005. Development of foodgrade cloning and expression vectors for Lactococcus lactis. J. Appl. Microbiol. 98: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Mayo B., van Sinderen D. & Ventura M. 2008. Genome analysis of food grade lactic acid-producing bacteria: from basics to applications. Curr. Genomics 9: 169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercenier A., Muller-Alouf H. & Grangette C. 2000. Lactic acid bacteria as live vaccines. Curr. Iss. Mol. Biol. 2: 17–25

    CAS  Google Scholar 

  • Nguyen T.T., Mathiesen G., Fredriksen L., Kittl R., Nguyen T.H., Eijsink V.G.H., Haltrich D. & Peterbauer C.K. 2011. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food Chem. 59: 5617–5624

    Article  CAS  PubMed  Google Scholar 

  • Nucifora G., Chu L., Misra T.K. & Silver S. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phumkhachorn P., Rattanachaikunsopon P. & Khunsook S. 2007. The use of gfp gene in monitoring bacteriocin-producing Lactobacillus plantarum N014, a potential starter culture in nham fermentation. J. Food Prot. 70: 419–424

    Article  CAS  PubMed  Google Scholar 

  • Phupaboon S., Pudpai N., Punyauppa-Path S., Phumkhachorn P. & Rattanachaikunsopon P. 2016. Isolation of lactic acid bacteria from fermented foods to be developed as DNA delivery vehicle. J. Sci. Technol. UBU 18: 21–29

    Google Scholar 

  • Rattanachaikunsopon P. & Phumkhachorn P. 2006. Isolation and preliminary characterization of a bacteriocin produced by Lactobacillus plantarum N014 isolated from nham, a traditional Thai fermented pork. J. Food Prot. 69: 1937–1943

    Article  CAS  PubMed  Google Scholar 

  • Rattanachaikunsopon P. & Phumkhachorn P. 2008. Incidence of nisin Z production in Lactococcus lactis subsp. lactis TFF 221 isolated from Thai fermented foods. J. Food Prot. 71: 2024–2026

    Article  CAS  PubMed  Google Scholar 

  • Rattanachaikunsopon P. & Phumkhachorn P. 2009. Glass bead-based transformation method for lactic acid bacteria. ScienceAsia 35: 234–241

    Article  CAS  Google Scholar 

  • Rattanachaikunsopon P. & Phumkhachorn P. 2012. Construction of a food-grade cloning vector for Lactobacillus plantarum and its utilization in a food model. J. Gen. Appl. Microbiol. 58: 317–324

    Article  CAS  PubMed  Google Scholar 

  • Rattanachaikunsopon P., Saito T. & Nitisinprasert S. 2003. Detection and partial characterization of bacteriocin produced by Leuconostoc isolated from Thai fermented food. J. Sci. Technol. Human. 1: 149–158

    Google Scholar 

  • Saez-Lara M.J., Gomez-Llorente C., Plaza-Diaz J. & Gil A. 2015. The role of probiotic lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res. Int. 2015: 1–15

    Article  Google Scholar 

  • Sasaki Y., Ito Y. & Sasaki T. 2004. ThyA as a selection marker in construction of food-grade host-vector and integration systems for Streptococcus thermophilus. Appl. Environ. Microbiol. 70: 1858–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott K.P., Mercer D.K., Richardson A.J., Melville C.M., Glover L.A. & Flint H.J. 2000. Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of marked strains in human gut simulations. FEMS Microbiol. Lett. 182: 23–27

    Article  CAS  PubMed  Google Scholar 

  • Seegers J.F.M.L., Bron S., Franke C.M., Venema G. & Keiweit R. 1994. The majority of lactococcal plasmids carry a highly related replicon. Microbiology 140: 1291–1300

    Article  CAS  PubMed  Google Scholar 

  • Trotter M., Mills S., Ross R.P., Fitzgerald G.F. & Coffey A. 2001. The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci. Lett. Appl. Microbiol. 33: 409–414

    Article  CAS  PubMed  Google Scholar 

  • von Wright A. & Raty K. 1993. The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett. Appl. Microbiol. 17: 25–28

    Article  Google Scholar 

  • Widyastuti Y., Rohmatussolihat & Febrisiantosa A. 2014. The role of lactic acid bacteria in milk fermentation. Food Nutr. Sci. 5: 435–442

    Google Scholar 

  • Wong W.Y., Su P., Allison G.E., Liu C.Q. & Dunn N.W. 2003. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Appl. Environ. Microbiol. 69: 5767–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pongsak Rattanachaikunsopon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phumkhachorn, P., Rattanachaikunsopon, P. A broad host range food-grade cloning vector for lactic acid bacteria. Biologia 71, 457–463 (2016). https://doi.org/10.1515/biolog-2016-0064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0064

Key words

Navigation