Skip to main content

Advertisement

Log in

Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Lead (Pb), a widespread contaminant in terrestrial landscape, is highly detrimental to plant and animal life. Specifically, Pb-contaminated soils cause a sharp decrease in crop productivity, thereby posing a serious risk to agriculture. A study was planned to investigate the toxic effect of Pb2+ (0, 16, 40 and 80 mg L−1) in the seedlings of maize (Zea mays), in terms of induced physiological and biochemical changes at initial hours of treatment (0–8 h). Increased accumulation of malondialdehyde (MDA) served as an indicator of cellular peroxidation. At 80 mg L−1 Pb2+, MDA content enhanced over the control by 175% after 2 h of exposure and increased further to 461% greater over the control after 8 h of exposure. Elevated superoxide ion (O −.2 ) and H2O2 contents suggested oxidative damage to the plants. The level of H2O2 increased over control by 70%, 80%, 135% and 182% at 2, 4, 6, and 8 h after exposure to 16 mg L−1 Pb2+, respectively. In situ histochemical localization confirmed the level of lipid peroxides, increased accumulation of OO −.2 and loss of membrane integrity upon Pb2+ treatment. Pb2+-induced oxidative stress triggered significant changes in the activities of antioxidant enzymes. A concentration-dependent increase was observed in the activities of the superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) in response to Pb2+, whereas catalases (CAT) was not able to provide protection against oxidative stress. These observations imply that Pb2+ -induced oxidative stress during initial period (0–8 h) of exposure involved ROS accumulation and upregulation of scavenging enzymes except CAT as a defense against Pb2+-toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher R.G., Erturk N. & Heath L.S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53: 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C. & Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–286.

    Article  CAS  PubMed  Google Scholar 

  • Boveris A., Cadenas E. & Chance B. 1980. Low level chemiluminescence of the lipoxygenase reaction. Photobiochem. Photobiophys. 1: 175–182.

    CAS  Google Scholar 

  • Cakmak I. & Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98: 1222–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury S. & Panda S.K. 2005. Toxic effects oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth under chromium and lead phytotoxicity. Water Air Soil Pollut. 167: 73–90.

    Article  CAS  Google Scholar 

  • Devi S.R. & Prasad M.N.V. 1998. Copper toxicity in Ceratophyllum demersum L (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants Plant Sci. 138: 157–165.

    Article  CAS  Google Scholar 

  • Dixit V., Vivek P. & Shyam R. 2001. Differential antioxidative responses to cadmium in root and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot. 52: 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  • Dogan M., Saygideger S.D. & Colak U. 2009. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull. Environ. Contam. Toxicol. 83: 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Egley G.H., Paul R.N., Vaughn K.C. & Duke S.O. 1983. Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. Planta 157: 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Ekmek¸ci Y., Tanyolac D. & Ayhan B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiol. Plant. 31: 319–330.

    Article  CAS  Google Scholar 

  • Feieraband J. & Engel S. 1986. Photoinactivation of catalase in vitro and in leaves. Arch. Biochem. Biophys. 251: 567–576.

    Article  Google Scholar 

  • Foyer C.H., Souriau N., Perret S., Lelandais M., Kunert K.J., Pruvost C. & Jouanin L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C.H. & Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposal role in ascorbic acid metabolism. Planta 133: 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875–880.

    Article  CAS  PubMed  Google Scholar 

  • Gaw˛eda M. 2007. Changes in the contents of some carbohydrates in vegetables cumulating Lead. Pol. J. Environ. Stud. 16: 57–62.

    Google Scholar 

  • Godbold D.Y. & Ketner C. 1991. Lead influences root growth and mineral nutrition of Picea abies seedlings. J. Plant Physiol. 139: 95–99.

    Article  CAS  Google Scholar 

  • Gratäo P.L., Polle A, Lea P.J. & Azevedo R.A. 2005. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 32: 481–494.

    Article  CAS  PubMed  Google Scholar 

  • Gupta D.K., Nicoloso F.T., Schetinger M.R.C., Rossato L.V., Pereira L.B., Castro G.Y., Srivastava S. & Tripathi R.D. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater. 172: 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Heath R.L. & Packer L. 1968. Photoperoxidation in isolated chloroplast I Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198

    Article  CAS  PubMed  Google Scholar 

  • Kaur G., Singh H.P., Batish D.R. & Kohli R.K. 2012. Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J. Environ. Biol. 33: 265–269.

    CAS  PubMed  Google Scholar 

  • Kaur G., Singh H.P., Batish D.R. & Kohli R.K. 2012. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma 250: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Keser G. & Saygideger S. 2010. Effects of Pb on the activities of antioxidant enzymes in water cress, Nasturtium officinale R Br. Biol. Trace. Elem. Res. 137: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Kopyra M. & Gwozdz E.A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Biochem. 41: 1011–1017.

    Article  CAS  Google Scholar 

  • Lamb D.T., Ming H., Megharaj M. & Naidu R. 2010. Phytotoxicity and accumulation of lead in Australian native vegetation. Arch. Environ. Contam. Toxicol. 58: 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Lee K.C., Cunningham B.A., Paulsen G.M., Liang G.H. & Moore R.B. 1976. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol. Plant. 36: 4–6.

    Article  CAS  Google Scholar 

  • Liu D., Zou J., Meng Q., Zou J. & Jiang W. 2009. Uptake and accumulation and oxidative stress in garlic (Allium sativum L) under lead phytotoxicity. Ecotoxicology 18: 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O.H., Rosebrough N.J., Farr A.L. & Randall R.J. 1951. Protein estimation with Folin-phenol reagent. J. Biol. Chem. 193: 265–278.

    CAS  PubMed  Google Scholar 

  • Małecka A., Piechalak A. & Tomaszewska B. 2009. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: the whole roots level. Acta Physiol. Plant. 31: 1053–1063.

    Article  CAS  Google Scholar 

  • Misra H.R. & Fridovich I. 1972. The univalent reduction of oxygen by reduced flavins and quinines. J. Biol. Chem. 247: 188–192.

    CAS  PubMed  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mustafa M.G. 1990. Biochemical basis of ozone toxicity. Free Rad. Biol. Medic. 9: 245–265.

    Article  CAS  Google Scholar 

  • Nakano Y. & Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880.

    CAS  Google Scholar 

  • Piotrowska A., Bajguzn A., Godlewska-Zyłkiewicz B. & Zambrzycka E. 2010. Changes in growth biochemical components and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch. Environ. Contam. Toxicol. 58: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Pompella A., Maellaro E., Casini A.F. & Comporti M. 1987. Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am. J. Pathol. 129: 295–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi M.I., Israr M., AbdinM.Z. & Iqbal M. 2005. Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ. Exp. Bot. 53: 185–193.

    Article  CAS  Google Scholar 

  • Reddy A.M., Kumar S.G., Jyothsnakumari G., Thimmanaik S. & Sudhakar C. 2005. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bangalgram (Cicer arietinum L.). Chemosphere 60: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Ruley A.T., Sharma N.C. & Sahi S.V. 2004. Antioxidant defense in a lead accumulating plant, Sesbania drummmondi. Plant Physiol. Biochem. 2: 899–906.

    Article  CAS  Google Scholar 

  • Sandalio L.M., Dalurzo H.C., Gómez M., Romero-Puertas M.C. & del Rio L.A. 2001. Cadmium induces changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115–2126.

    Article  CAS  PubMed  Google Scholar 

  • Sengar R.S., Gautam M., Sengar R.S., Garg S.K., Sengar K. & Chaudhary R. 2008. Lead stress effects on physiobiochemical activities of higher plants. Rev. Environ. Contam. Toxic. 196: 73–93.

    CAS  Google Scholar 

  • Sobrino A.S., Miranda M.G., Alvarez C. & Quiroz A. 2010. Bioaccumulation and toxicity of lead (Pb) in Lemna gibba L. (duckweed). J. Environ Sci. Health 45: 107–110.

    Article  CAS  Google Scholar 

  • Stone J.R. & Yang S. 2006. Hydrogen peroxide: a signaling messenger. Antioxid. Redox. Signal. 8: 243–270.

    Article  CAS  PubMed  Google Scholar 

  • Singh H.P., Batish D.R., Kaur G., Arora K. & Kohli R.K. 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ. Exp. Bot. 63: 158–167.

    Article  CAS  Google Scholar 

  • Singh R.P., Tripathi R.D., Sinha S.K., Maheswari R. & Srivastava H.S. 1997. Response of higher plants to lead contaminated environment. Chemosphere 32: 2467–2493.

    Article  Google Scholar 

  • Velikova V., Yordanov I. & Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants. Plant Sci. 151: 59–66.

    Article  CAS  Google Scholar 

  • Verma S. & Dubey R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164: 645–655.

    Article  CAS  Google Scholar 

  • Wierzbicka M. & Obidzinska J. 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Sci. 137: 155–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Gurpreet Kaur is thankful to University Grants Commission (New Delhi, India) for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harminder Pal Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Singh, H.P., Batish, D.R. et al. Adaptations to oxidative stress in Zea mays roots under short-term Pb2+ exposure. Biologia 70, 190–197 (2015). https://doi.org/10.1515/biolog-2015-0023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0023

Key words

Navigation