Skip to main content
Log in

Phylogeny and maternal donor of Elymus (Triticeae: Poaceae) in China based on chloroplast matK sequences

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The chloroplast DNA regionsmatK was used to analyze to phylogenetic relationships and maternal donor of Elymus species and their closely related species. The Neighbor-Joining phylogenetic reconstructions partitioned the species into one monophyletic groups. All the Elymus species were related to species of Pseudoroegneria. These results indicated that Pseudoroegneria (St genome) was the maternal donor of the polyploidy Elymus. In addition, the St genome of Elymus had several origins and diverse species of Pseudoroegneria might have taken part in the formation of polyploid species of Elymus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dewey D.R. 1967. Synthetic hybrids of Agropyron scribneri × Elymus juncea. Bulletin of the Torrey Botanical Club. 94: 388–395.

    Article  Google Scholar 

  • Dewey D.R. 1971. Synthetic hybrids of Hordeum bogdanii with Elymus canadensis and Sitanion hystrix. Am. J. Bot. 58: 902–908.

    Article  Google Scholar 

  • Dewey D.R. 1984. The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae, pp.209–279. In: Gustafson J.P. (ed.), Gene Manipulation in Plant Improvement, Plenum, New York.

    Chapter  Google Scholar 

  • Dong Z.Z., Fan X. & Sha L.N. 2015. Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol. 15: 179–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle J.J. & Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Fan X., Sha L.N., Yang R.W., Zhang H.Q., Kang H.Y., Zhang L., Ding C.B., Zheng Y.L. & Zhou Y.H. 2009. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol. Biol. 9: 247–262.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X., Sha L.N., Zeng J., Kang H.Y., Zhang H.Q., Wang X.L., Zhang L., Yang R.W., Ding C.B., Zheng Y.L. & Zhou Y.H. 2012. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relative. PLoS One 7: e31122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y.X. & Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao G., Deng J.B., Gou X.M., Wang Q., Ding C.B., Zhang L., Zhou Y.H. & Yang R.W. 2015. Phylogenetic relationships among Elymus and related diploid genera (Triticeae: Poaceae) based on nuclear rDNA ITS sequences. Biologia 70: 183–189.

    Article  Google Scholar 

  • Ge S., Sang T., Lu B.R. & Hong D.Y. 1999. Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc.Natl. Acad. Sci. USA 96: 14400–14405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson R.R. 1990. Gene genealogies and the coalescent process, pp.1–44. In: Futuyma D. & Antonovics J. (eds): Oxford Surveys in Evolutionary Biology, Oxford University Press, New York.

  • Jensen K.B. 1990. Cytology and taxonomy of Elymus kengii, E. grandiglumis, E. alatavicus and E. batalinii (Triticeae: Poaceae). Genome 33: 668–673.

    Article  Google Scholar 

  • Liu Q.L., Ge S. & Tang H.B. 2006. Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. New Phytol. 170: 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Löve A. 1984. Conspectus of the Triticeae. Feddes Rep. 95: 425–521.

    Google Scholar 

  • Lu B.R. 1994. The genus Elymus L. in Asia. Taxonomy and biosystematics with special reference to genomic relationships, pp. 219–233. In: Wang R.R.-C., Jensen K.B. & Jaussi C. (eds), Proceedings of the 2nd International Triticeae Symposium. Utah State University Press, Utah.

  • Mason-Gamer R.J., Burns M.M. & Naum M. 2010. Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: analyses of three nuclear gene trees. Mol. Phylogenet. Evol. 54: 10–22.

    Article  PubMed  Google Scholar 

  • Nei M. & Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto S.P. 2007. The evolutionary consequences of polyploidy. Cell 131: 452–462.

    Article  CAS  PubMed  Google Scholar 

  • Redinbaugh M.G., Jones T.A. & Zhang Y. 2000. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome 43: 846–852.

    Article  CAS  PubMed  Google Scholar 

  • Rozas J., Sánchez-DelBarrio J.C., Messeguer X. & Rozas R. 2003. Dna SP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  • Soltis P.S. & Soltis D.E. 2000. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. USA 97: 7051–7057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis D.E., Soltis P.S. & Tate J.A. 2003. Advances in the study of polyploidy since plant speciation. New Phytol. 161: 173–191.

    Article  Google Scholar 

  • Symonds V.V., Soltis P.S. & Soltis D.E. 2010. Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution 64: 1984–2003.

    PubMed  Google Scholar 

  • Tajima F. 1989. Statistical method for testing the neutral mutation of hypothesis by DNA polymorphism. Genetics 123: 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Moleculare volutionary genetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving thesensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabinejad J. & Mueller R.J. 1993. Genome constitution of the Australian hexaploid grass, Elymus scabrus (Poaceae: Triticeae). Genome 36: 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Wang R.R.C., Dewey D.R. & Hsiao C. 1986. Genomic analysis of the tetraploid Pseudoroegneria tauri. Crop Sci. 26: 723–727.

    Article  Google Scholar 

  • Watterson G.A. 1975. On the number of segregation sites in genetic models without ecombination. Theor. Popul. Biol. 7: 256–276.

    Article  CAS  PubMed  Google Scholar 

  • Wendel J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol. 42: 225–249.

    Article  CAS  PubMed  Google Scholar 

  • Yan C. & Sun G.L. 2012. Multiple origins of allopolyploid wheatgrass Elymus caninus revealed by RPB2, PepC and TrnD/T genes. Mol. Phylo. Evol. 64: 441–451.

    Article  Google Scholar 

  • Yan C., Sun G.L. & Sun D.F. 2011. Distinct origin of the Y and St genome in Elymus species: evidence from the analysis of a large sample of St genome species using two nuclear genes. PLoS One 6: e26853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen C. & Yang J.L. 2013. Biosystematics of Triticeae. Chinese Agriculture Press, Beijing.

    Google Scholar 

  • Yu H.Q., Zhang C., Ding C.B., Ma X. & Zhou Y.H. 2010. Maternal donors of polyploids in Pseudoroegneria (Poaceae: Triticeae) and related genera inferred from chloroplast trnL-F sequences. Turk. J. Biol. 34: 335–342.

    CAS  Google Scholar 

  • Zhang C., Fan X., Yu H.Q., Wang X.L. & Zhou Y.H. 2009. Different maternal genome donor to Kengyilia (Poaceae: Triticeae) species inferred from chloroplast trnL-F sequences. Biol. Plant. 53: 759–763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiwu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Deng, J., Zhang, Y. et al. Phylogeny and maternal donor of Elymus (Triticeae: Poaceae) in China based on chloroplast matK sequences. Biologia 72, 595–600 (2017). https://doi.org/10.1515/biolog-2017-0067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2017-0067

Key words

Navigation