Skip to main content
Log in

Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminuta reveals their immunogenic properties and the presence of new E-S proteins in cestodes

  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Hymenolepis diminuta is an important model species in studies of therapeutics, biochemical processes, immune responses and other aspects of cestodiasis. The parasite produces numerous excretory-secretory (E-S) proteins and a glycocalyx covering its body. Our study focused on the mass spectrometry analysis of the E-S material with an objective to determine if E-S contains any new proteins, in particular those that can be identified as: antigens, vaccine candidates and drug targets. These proteins might engage directly in host-parasite interactions. Adult parasites collected from experimentally infected rats were cultured in vitro for 5 and 18h. Immunoblotting was used to verify which E-S protein bands separated in SDS-PAGE (sodium dodecyl sulfatepolyacrylamide gel electrophoresis) react with specific antibodies from sera of infected rats. We identified thirty-nine proteins by LC-MS/MS (liquid chromatography mass spectrometry). Results indicated the presence of proteins that have never been identified in cestode E-S material. Immunoblotting showed the immunogenicity of E-S products of H. diminuta, most probably associated with the presence of proteins known as antigens in other flatworm species. Among identified proteins are those engaged in immunomodulatory processes (eg. HSP), in response to oxidative stress (peroxidasin) or metabolism (eg. GAPDH). The predominant functions are associated with metabolism and catalytic activity. This is the first study identifying E-S-proteins in adult tapeworms, thus providing information for better understanding host-parasite interrelationships, and may point out potential targets for vaccines or drug discovery studies, as among the proteins observed in our study are those known to be antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai H.P. 1980. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York: Academic Press INC

    Google Scholar 

  • Asea A. 2008. Heat shock proteins and toll-like receptors. Handbook of Experimental Pharmacology, 183, 111–127

    Article  CAS  Google Scholar 

  • Aziz A., Zhang W., Li J., Loukas A., McManus D.P., Mulvenna J. 2011. Proteomic analysis of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. Journal of Proteomics, 74, 1560–1572. DOI: 10.1016/j.jprot.2011.02.021

    Article  CAS  Google Scholar 

  • Bártíková H., Vokřál I., Skálová L., Kubíček V., Firbasová J., Briestenský D., Lamka J., Szostakova B. 2012. The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology, 139, 809–818. DOI: 10.1017/S00311 82011002265

    Article  CAS  Google Scholar 

  • Bernal D., de la Rubia J.E., Carrasco-Abad A.M., Toledo R., Mas-Coma S., Marcilla A. 2004. Identification of enolase as plasminogen- binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters, 563, 203–206

    Article  CAS  Google Scholar 

  • Bien J., Näreaho A., Varmanen P., Gozdzik K., Moskwa B., Cabaj W., Nyman T.A., Savijoki K. 2012. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting. Proteome Science, 10(1), 10. DOI: 10.1186/1477-5956-10-10

    Article  CAS  Google Scholar 

  • Čadková Z., Miholová D., Száková J., Válek P., Jankovská I., Langrová I. 2014. Is the tapeworm able to affect tissue Pb-concentrations in white rat? Parasitology, 141, 826–836. DOI: 10.1017/S0031182013002242

    Article  CAS  Google Scholar 

  • Charlier J., van der Voort M., Kenyon F., Skuce P., Vercruysse J. 2014. Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30, 361–367. DOI: 10.1016/j.pt.2014.04.009

    Article  Google Scholar 

  • Chemale G., van Rossum A.J., Jefferies J.R., Barrett J., Brophy P.M., Ferreira H.B., Zaha A. 2003. Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3, 1633–1636

    Article  CAS  Google Scholar 

  • Cox F.E.G. 2002. History of Human Parasitology. Clinical Microbiology Reviews, 15, 595–612. DOI: 10.1128/CMR.15.4.595-612.2002

    Article  CAS  Google Scholar 

  • Cui S.J., Xu L.L., Zhang T., Xu M., Yao J., Fang C.Y., Feng Z., Yang P.Y., Hu W., Liu F. 2013. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. Journal of Proteomics, 84, 158–175. DOI: 10.1016/j.jprot.2013.04.013

    Article  CAS  Google Scholar 

  • Curwen R.S., Ashton P.D., Johnston D.A., Wilson R.A. 2004. The Schistosoma mansoni proteome: a comparison across four life-cycle stages. Molecular and Biochemical Parasitology, 138, 57–66

    Article  CAS  Google Scholar 

  • Dea-Ayuela M.A., Sadkowska-Todys M., Wroblewski J., Torrado-Durán J.J., Golab, E., Bolas-Fernández, F. 2015. Immunoproteomic analysis of Trichinella spiralis larval crude antigens recognized by sera from patients with trichinellosis after treatment with albendazole. Tropical Biomedicine, 32, 613–624

    Google Scholar 

  • De la Torre Escudero E., Manzano-Roman R., Valero L., Oleaga A., Perez-Sanchez R., Hermandez-Gonzales A., Siles-Lucas M. 2011. Comparative proteomic analysis of Fasciola hepatica juveniles and Schistosoma bovis schistosomula. Journal of Proteomics, 74, 1534–1544. DOI: 10.1016/j.jprot.2011.05.024

    Article  CAS  Google Scholar 

  • Elias D., Britton B., Kassu A., Akuffo H. 2007. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Review of Anti-infective Therapy, 5, 475–484. DOI: 10.1586/14787210.5.3.475

    Article  Google Scholar 

  • Evans W.S. 1980. The cultivation of Hymenolepis in vitro. In: Arai HP editor. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York, Academic Press INC, 425–448

    Chapter  Google Scholar 

  • Garcia L.S., Bruckner D.A. 1997. Diagnostic medical parasitology. 3rd ed. Washington DC, ASM Press

    Google Scholar 

  • Graepel R., Leung G., Wang A., Villemaire M., Jirik F.R., Sharkey K.A., McDougall J.J., McKay D.M. 2013. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. International Journal for Parasitology, 43, 593–601. DOI: 10.1016/j.ijpara.2013.02.006

    Article  Google Scholar 

  • Harnett W. 2014. Secretory products of helminth parasites as immunomodulators. Molecular and Biochemical Parasitology, 195, 130–136. DOI: 10.1016/j.molbiopara.2014.03.007

    Article  CAS  Google Scholar 

  • Hernandez J.L., Leung G., McKay D.M. 2013. Cestode regulation of inflammation and inflammatory diseases. International Journal for Parasitology, 43, 233–243. DOI: 10.1016/j.ijpara.2012.09.005

    Article  CAS  Google Scholar 

  • Hewitson J.P., Harcus Y., Murray J., Agtmaal M., Filbey K.J., Grainger J.R., et al. 2011. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of Venom Allergen- Like (VAL) proteins. Journal of Proteomics, 74, 1573–1594. DOI: 10.1016/j.jprot.2011.06.002

    Article  CAS  Google Scholar 

  • Jefferies J.R., Campbell A.M., van Rossum A.J., Barrett J., Brophy P.M. 2001. Proteomic analysis of Fasciola hepatica excretory- secretory products. Proteomics, 1, 1128–1132

    Article  CAS  Google Scholar 

  • Johnston M.J., MacDonald J.A., McKay D.M. 2009. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology, 136, 125–147. DOI: 10.1017/S003118200800 5210

    Article  CAS  Google Scholar 

  • Johnston M.J., Wang A., Catarino M.E., Ball L., Phan V.C., MacDonald J.A., McKay D.M. 2010. Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infection and Immunity, 78, 1364–1375. DOI: 10.1128/IAI.01349-08

    Article  CAS  Google Scholar 

  • Kim J.H., Kim Y.J., Sohn W.M., Bae Y.M., Hong S.T., Choi M.H. 2009. Differential protein expression in Spirometra erinacei according to its development in its final host. Parasitology Research, 105, 1549–1556. DOI: 10.1007/s00436-009-1585-8

    Article  Google Scholar 

  • Knudsen G.M., Medzihradszky K.F., Lim K.Ch., Hansell E., McKerrow J.H. 2005. Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics, 4, 1862–1875

    Article  CAS  Google Scholar 

  • Kouguchi H., Matsumoto J., Katoh Y., Suzuki T., Oku Y., Yagi K. 2010. Echinococcus multilocularis: Two-dimensional Western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs. Experimental Parasitology, 124, 238–243. DOI: 10.1016/j.exppara.2009.09.016

    Article  CAS  Google Scholar 

  • Kosik-Bogacka D.I., Wojtkowiak-Giera A., Kolasa A., Baranowska- Bosiacka I., Lanocha N., Wandurska-Nowak E., Izabela G., Salamatin R., Jagodzinski P.P. 2014. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes and protein (TLR3 and TLR9) in the small and large intestines of rats. Experimental Parasitology, 145, 161–167. DOI: 10.1016/j.exppara.2014.07.009

    Article  CAS  Google Scholar 

  • Laschuk A., Monteneiro K.M., Vidal N.M., Pinto P.M., Duran R., Cervenanski C., Zaha A., Ferrera H.B. 2011. Proteomic survey of the cestode Mesocestoides corti during the first 24 hour of strobilar development. Parasitology Research, 108, 645–656. DOI: 10.1007/s00436-010-2109-2

    Article  Google Scholar 

  • Liu F., Cui S.J., Hu W., Feng Z., Wang Z.Q., Han Z.G. 2009. Excretory/ secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Molecular and Cellular Proteomics, 8, 1236–1251. DOI: 10.1074/mcp.M800538-MCP200

    Article  CAS  Google Scholar 

  • Ludolf F., Patrocinio P.R., Correa-Oliveira R., Gazzinelli A., Falcone F.H., Teixeira-Ferreira A., Perales J., Oliveira G.C., Silva- Pereira R.A. 2014. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Neglected Tropical Diseases, 8, e2745. DOI: 10.1371/journal.pntd.0002745

    Article  CAS  Google Scholar 

  • Mansur F., Luoga W., Buttle D.J., Duce I.R., Lowe A., Behnke J.M. 2015. The anthelmintic efficacy of natural plant cysteine proteinases against the rat tapeworm Hymenolepis diminuta in vivo. Journal of Helminthology, 12, 1–10. (Epub ahead of print) PubMed PMID: 25761568

    Google Scholar 

  • Melon A., Wang A., Phan V., McKay D.M. 2010. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. Journal of Biomedicine and Biotechnology, 2010, 384523. DOI: 10.1155/2010/384523

    Article  CAS  Google Scholar 

  • Monteneiro K.M., de Carvalho M.O., Zaha A., Ferreira H.B. 2010. Proteomic analysis of the Echinococcuc granulosus metacestode during infection of its intermediate host. Proteomics. 10, 1985–1999. DOI: 10.1002/pmic.200900506

    Article  CAS  Google Scholar 

  • Morphew R.M., Barret J., Brophy P.M. 2006. In: Maule AG, Marks NJ editors. Parasitic flatworms molecular biology, biochemistry, immunology and physiology. Cambridge, MA: CABI International, 327–347

  • Nareaho A., Ravanko K., Holtta E., Sukura A. 2006. Comparative analysis of Trichinella spiralis and Trichinella nativa proteins by two-dimensional gel electrophoresis. Parasitology Research, 98, 349–354

    Article  CAS  Google Scholar 

  • Nguyen H.A., Bae Y.A., Lee E.G., Kim S.H., Diaz-Camacho S.P., Nawa Y, Kang I., Kong Y. 2010. A novel sigma-like glutathione transferaze of Taenia solium metacestode. International Journal for Parasitology, 40, 1097–1105. DOI: 10.1016/j.ijpara.2010.03.007

    Article  CAS  Google Scholar 

  • Pandey A., Mann M. 2000. Proteomics to study genes and genomes. Nature, 405(6788), 837–846

    Article  CAS  Google Scholar 

  • Perez-Sanchez R., Valero M.L., Ramajo-Hernandez A., Siles-Lucas M., Ramajo-Martin V., Oleaga A. 2008. A proteomic approach to the identification of tegumental proteins of male and female Schistosoma bovis worms. Molecular and Biochemical Parasitology, 161, 112–123. DOI: 10.1016/j.molbiopara.2008.06.011

    Article  CAS  Google Scholar 

  • Pockley A.G., Muthana M., Calderwood S.K. 2008. The dual immunoregulatory roles of stress proteins. Trends in Biochememical Sciences, 33, 71–79. DOI: 10.1016/j.tibs.2007.10.005

    Article  CAS  Google Scholar 

  • Ferreira A.G. 2011. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. Journal of Proteomics, 74, 1545–1155. DOI: 10.1016/j.jprot.2011.04.031

    Article  CAS  Google Scholar 

  • Reyes J.L., Wang A., Fernando M.R., Graepel R., Leung G., van Rooijen N., Sigvardosson M., McKay D.M. 2015. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. Journal of Immunology, 194, 364–378. DOI: 10.4049/jimmunol.1400738

    Article  CAS  Google Scholar 

  • Santivanez S.J., Hermandez-Gonzales A., Chile N., Oleaga A., Arana Y., Palma S., et al. 2010. Proteomic study of activated Taenia solium oncospheres. Molecular and Biochemical Parasitology, 171, 32–39. DOI: 10.1016/j.molbiopara.2010.01.004

    Article  CAS  Google Scholar 

  • Shi M., Wang A., Prescott D., Waterhouse C.C., Zhang S., McDougall J.J., Sharkey K.A., McKay D.M. 2011. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant- induced monoarthritis in mice. Arthritis and Rheumatism, 63, 434–444. DOI: 10.1002/art.30098

    Article  CAS  Google Scholar 

  • Shostak A.W. 2014. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. Journal for Parasitology, 100, 46–58. DOI: 10.1645/13-347.1.

    Article  Google Scholar 

  • Sirover M.A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta, 1432, 159–184

    Article  CAS  Google Scholar 

  • Skrzycki M., Majewska M., Podsiad M., Czeczot H., Salamatin R., Twarowska J., Grynter-Zięcina B. 2011. Hymenolepis diminuta: experimental studies on the antioxidant system with short and long term infection periods in the rats. Experimental Parasitology, 129, 158–163. DOI: 10.1016/j.exppara.2011.06.014

    Article  CAS  Google Scholar 

  • Sotillo J., Valero L., Sanchez Del Pino M.M., Fried B., Esteban J.G., Marcilla A., Toledo R. 2008. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 30, 271–9. DOI: 10.1111/j.1365-3024.2007.01019.x

    Article  CAS  Google Scholar 

  • Tsai I.J., Zarowiecki M., Holroyd N., Garciarrubio A., Sanchez-Flores A., Brooks K.L. et al. 2013. The genomes of four tapeworm species reveal adaptations to parasitism. Nature, 4, 496(7443), 57–63. DOI: 10.1038/nature12031

    Article  CAS  Google Scholar 

  • Virginio V.G., Monteneiro K.M., Drumond F., de Carvalho M.O., Vargas D.M., Zaha A., Ferreira H.B. 2012. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Molecular and Biochemical Parasitology, 183, 15–22. DOI: 10.1016/j.molbiopara.2012.01.001

    Article  CAS  Google Scholar 

  • Wang Y., Cheng Z., Lu X., Tang C. 2009. Echinococcus multilocularis: Proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Experimental Parasitology, 123, 162–167. DOI: 10.1016/j.exppara.2009.06.014

    Article  CAS  Google Scholar 

  • Woolsey I.D., Fredensborg B.L., Jensen P.M., Kapel C.M., Meyling N.V. 2015. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. Parasitology Research, 114, 2777–80. DOI: 10.1007/s00436-015-4477-0

    Article  Google Scholar 

  • Yatsuda A.P., Krijgsveld J., Cornelissen A., Heck A.J.R., de Vries E. 2003. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contorus reveals extensive sequence variation and differential immune recognition. Journal of Biological Chemistry, 278, 16941–16951

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Młocicki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bień, J., Sałamatin, R., Sulima, A. et al. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminuta reveals their immunogenic properties and the presence of new E-S proteins in cestodes. Acta Parasit. 61, 429–442 (2016). https://doi.org/10.1515/ap-2016-0058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/ap-2016-0058

Keywords

Navigation