Skip to main content
Log in

Associations and Potential Multiple Mechanisms between Subjective Hearing Loss and Cognitive Impairment

  • Original Research
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

Background

Subjective hearing loss (SHL) refers to an individual’s self-assessment of their hearing loss. The association and underlying mechanisms between SHL and cognitive impairment still necessitate elucidation.

Objectives

To validate potential mechanisms between SHL and cognitive impairment.

Design

Cross-section.

Setting

Shanghai, China.

Participants

A total of 2369 individuals from communities and the cognitive disorder clinic.

Measurements

All participants were subjected to a comprehensive neuropsychological assessment, encompassing the Hearing Handicap Inventory for the Elderly-Screening Version (HHIE-S). The participants’ brain β-amyloid (Aβ) deposition status, plasma biomarkers associated with Alzheimer’s disease (AD), and cardiovascular risk factors were also collected.

Results

In individuals with a heightened SHL, elevated HHIE-S score was linked to diminished cognitive and daily functioning as well as heightened levels of depressed mood. This correlation was observed in auditory memory performance but not in visual memory. The influence of SHL on cognitive function was mediated by depressed mood. SHL was associated with diabetes and smoking, whereas cognitive function was associated with hyperlipidemia and alcohol consumption. In individuals with positive brain Aβ deposition, SHL demonstrated associations with cognitive function independent of plasma Aβ42/40 ratio, P-tau181, neurofilament light chain, and APOE allele status.

Conclusion

SHL has an independent effect on cognitive impairment. The findings do no provide evidence for the common cause mechanism. Instead, the findings support the presence of a cognitive resource mechanism and an impoverished environment mechanism, along with the potential for a pathological interaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Data Availability: The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. GBD 2019 Hearing Loss Collaborators. Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019. Lancet. 2021;397(10278):996–1009. doi:https://doi.org/10.1016/S0140-6736(21)00516-X

    Article  Google Scholar 

  2. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–446. doi:https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  Google Scholar 

  3. Uchida Y, Sugiura S, Nishita Y, Saji N, Sone M, Ueda H. Age-related hearing loss and cognitive decline — The potential mechanisms linking the two. Auris Nasus Larynx. 2019;46(1):1–9. doi:https://doi.org/10.1016/j.anl.2018.08.010

    Article  PubMed  Google Scholar 

  4. Golub JS, Brickman AM, Ciarleglio AJ, Schupf N, Luchsinger JA. Association of Subclinical Hearing Loss With Cognitive Performance. JAMA Otolaryngol Head Neck Surg. 2020;146(1):57–67. doi:https://doi.org/10.1001/jamaoto.2019.3375

    Article  PubMed  Google Scholar 

  5. Griffiths TD, Lad M, Kumar S, et al. How Can Hearing Loss Cause Dementia? Neuron. 2020;108(3):401–412. doi:https://doi.org/10.1016/j.neuron.2020.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kurata N, Schachern PA, Paparella MM, Cureoglu S. Histopathologic Evaluation of Vascular Findings in the Cochlea in Patients With Presbycusis. JAMA Otolaryngol Head Neck Surg. 2016;142(2):173–178. doi:https://doi.org/10.1001/jamaoto.2015.3163

    Article  PubMed  Google Scholar 

  7. Omata Y, Tharasegaran S, Lim YM, et al. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception. Aging (Albany NY). 2016;8(3):427–439. doi:https://doi.org/10.18632/aging.100899

    Article  CAS  PubMed  Google Scholar 

  8. Shityakov S, Hayashi K, Störk S, Scheper V, Lenarz T, Förster CY. The Conspicuous Link between Ear, Brain and Heart-Could Neurotrophin-Treatment of Age-Related Hearing Loss Help Prevent Alzheimer’s Disease and Associated Amyloid Cardiomyopathy? Biomolecules. 2021;11(6):900. doi:https://doi.org/10.3390/biom11060900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Förster CY, Shityakov S, Scheper V, Lenarz T. Linking Cerebrovascular Dysfunction to Age-Related Hearing Loss and Alzheimer’s Disease-Are Systemic Approaches for Diagnosis and Therapy Required? Biomolecules. 2022;12(11):1717. doi:https://doi.org/10.3390/biom12111717

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim JS, Lee HJ, Lee S, et al. Conductive Hearing Loss Aggravates Memory Decline in Alzheimer Model Mice. Front Neurosci. 2020;14:843. doi:https://doi.org/10.3389/fnins.2020.00843

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zheng M, Yan J, Hao W, et al. Worsening hearing was associated with higher β-amyloid and tau burden in age-related hearing loss. Sci Rep. 2022;12(1):10493. doi:https://doi.org/10.1038/s41598-022-14466-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Golub JS, Sharma RK, Rippon BQ, Brickman AM, Luchsinger JA. The Association Between Early Age-Related Hearing Loss and Brain β-Amyloid. Laryngoscope. 2021;131(3):633–638. doi:https://doi.org/10.1002/lary.28859

    Article  CAS  PubMed  Google Scholar 

  13. de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ. Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease. PLoS Comput Biol. 2012;8(8):e1002582. doi:https://doi.org/10.1371/journal.pcbi.1002582

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther. 2022;14(1):101. doi:https://doi.org/10.1186/s13195-022-01041-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–397. doi:https://doi.org/10.1016/j.cell.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  16. Xu W, Zhang C, Li JQ, et al. Age-related hearing loss accelerates cerebrospinal fluid tau levels and brain atrophy: a longitudinal study. Aging (Albany NY). 2019;11(10):3156–3169. doi:https://doi.org/10.18632/aging.101971

    Article  CAS  PubMed  Google Scholar 

  17. Parker T, Cash DM, Lane C, et al. Pure tone audiometry and cerebral pathology in healthy older adults. J Neurol Neurosurg Psychiatry. 2020;91(2):172–176. doi:https://doi.org/10.1136/jnnp-2019-321897

    Article  PubMed  Google Scholar 

  18. Sarant JZ, Harris DC, Busby PA, et al. No Influence of Age-Related Hearing Loss on Brain Amyloid-β. J Alzheimers Dis. 2022;85(1):359–367. doi:https://doi.org/10.3233/JAD-215121

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tuwaig M, Savard M, Jutras B, et al. Deficit in Central Auditory Processing as a Biomarker of Pre-Clinical Alzheimer’s Disease. J Alzheimers Dis. 2017;60(4):1589–1600. doi:https://doi.org/10.3233/JAD-170545

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang HF, Zhang W, Rolls ET, et al. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. EBioMedicine. 2022;86:104336. doi:https://doi.org/10.1016/j.ebiom.2022.104336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Armstrong NM, An Y, Doshi J, et al. Association of Midlife Hearing Impairment With Late-Life Temporal Lobe Volume Loss. JAMA Otolaryngol Head Neck Surg. 2019;145(9):794–802. doi:https://doi.org/10.1001/jamaoto.2019.1610

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ray J, Popli G, Fell G. Association of Cognition and Age-Related Hearing Impairment in the English Longitudinal Study of Ageing. JAMA Otolaryngol Head Neck Surg. 2018;144(10):876–882. doi:https://doi.org/10.1001/jamaoto.2018.1656

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin FR, Albert M. Hearing loss and dementia - who is listening? Aging Ment Health. 2014;18(6):671–673. doi:https://doi.org/10.1080/13607863.2014.915924

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lichtenstein MJ, Bess FH, Logan SA. Validation of screening tools for identifying hearing-impaired elderly in primary care. JAMA. 1988;259(19):2875–2878.

    Article  CAS  PubMed  Google Scholar 

  25. Torre P, Moyer CJ, Haro NR. The accuracy of self-reported hearing loss in older Latino-American adults. Int J Audiol. 2006;45(10):559–562. doi:https://doi.org/10.1080/14992020600860935

    Article  PubMed  Google Scholar 

  26. Videhult Pierre P, Johnson AC, Fridberger A. Subjective and Clinically Assessed Hearing Loss; A Cross-Sectional Register-Based Study on a Swedish Population Aged 18 through 50 Years. PLoS One. 2015;10(4):e0123290. doi:https://doi.org/10.1371/journal.pone.0123290

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao X, Zhou Y, Wei K, et al. Associations of sensory impairment and cognitive function in middle-aged and older Chinese population: The China Health and Retirement Longitudinal Study. J Glob Health. 2021;11:08008. doi:https://doi.org/10.7189/jogh.11.08008

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vaccaro R, Zaccaria D, Colombo M, Abbondanza S, Guaita A. Adverse effect of self-reported hearing disability in elderly Italians: Results from the InveCe.Ab study. Maturitas. 2019;121:35–40. doi:https://doi.org/10.1016/j.maturitas.2018.12.009

    Article  PubMed  Google Scholar 

  29. Matthews K, Dawes P, Elliot R, Pendleton N, Tampubolon G, Maharani A. Trajectories of self-reported hearing and their associations with cognition: evidence from the United Kingdom and United States of America. Age Ageing. 2023;52(2):afad017. doi:https://doi.org/10.1093/ageing/afad017

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui L, Huang L, Pan FF, et al. Chinese Preclinical Alzheimer’s Disease Study (C-PAS): Design and Challenge from PET Acceptance. J Prev Alz Dis. Published online 2023. doi:https://doi.org/10.14283/jpad.2023.49

  31. Pan FF, Wang Y, Huang L, Huang Y, Guo QH. Validation of the Chinese version of Addenbrooke’s cognitive examination III for detecting mild cognitive impairment. Aging Ment Health. 2022;26(2):384–391. doi:https://doi.org/10.1080/13607863.2021.1881757

    Article  PubMed  Google Scholar 

  32. Huang L, Chen KL, Lin BY, et al. Chinese version of Montreal Cognitive Assessment Basic for discrimination among different severities of Alzheimer’s disease. Neuropsychiatr Dis Treat. 2018;14:2133–2140. doi:https://doi.org/10.2147/NDT.S174293

    Article  PubMed  PubMed Central  Google Scholar 

  33. Farias ST, Mungas D, Reed BR, et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology. 2008;22(4):531–544. doi:https://doi.org/10.1037/0894-4105.22.4.531

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cui L, Zhang Z, Guo Y, Li Y, Xie F, Guo Q. Category Switching Test: A Brief Amyloid-β-Sensitive Assessment Tool for Mild Cognitive Impairment. Assessment. Published online April 20, 2023:10731911231167537. doi:https://doi.org/10.1177/10731911231167537

  35. Zhao Q, Guo Q, Hong Z. Clustering and switching during a semantic verbal fluency test contribute to differential diagnosis of cognitive impairment. Neurosci Bull. 2013;29(1):75–82. doi:https://doi.org/10.1007/s12264-013-1301-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Knesevich JW, LaBarge E, Edwards D. Predictive value of the Boston Naming Test in mild senile dementia of the Alzheimer type. Psychiatry Res. 1986;19(2):155–161. doi:https://doi.org/10.1016/0165-1781(86)90008-9

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Q, Guo Q, Liang X, et al. Auditory Verbal Learning Test is Superior to Rey-Osterrieth Complex Figure Memory for Predicting Mild Cognitive Impairment to Alzheimer’s Disease. Curr Alzheimer Res. 2015;12(6):520–526. doi:https://doi.org/10.2174/1567205012666150530202729

    Article  CAS  PubMed  Google Scholar 

  38. Benedict RHB, Schretlen D, Groninger L, Dobraski M, Shpritz B. Revision of the Brief Visuospatial Memory Test: Studies of normal performance, reliability, and validity. Psychological Assessment. 1996;8(2):145–153. doi:https://doi.org/10.1037/1040-3590.8.2.145

    Article  Google Scholar 

  39. Zhao Q, Guo Q, Li F, Zhou Y, Wang B, Hong Z. Application of a new variant of the Trail making test. PLoS One. 2013;8(2):e57333. doi:https://doi.org/10.1371/journal.pone.0057333

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen K, Huang L, Lin B, Zhou Y, Zhao Q, Guo Q. The Number of Items on Each Stroop Test Card Is Unrelated to Its Sensitivity. Neuropsychobiology. 2019;77(1):38–44. doi:https://doi.org/10.1159/000493553

    Article  PubMed  Google Scholar 

  41. Corruble E, Legrand JM, Zvenigorowski H, Duret C, Guelfi JD. Concordance between self-report and clinician’s assessment of depression. J Psychiatr Res. 1999;33(5):457–465. doi:https://doi.org/10.1016/s0022-3956(99)00011-4

    Article  CAS  PubMed  Google Scholar 

  42. Miebach L, Wolfsgruber S, Polcher A, et al. Which features of subjective cognitive decline are related to amyloid pathology? Findings from the DELCODE study. Alzheimers Res Ther. 2019;11(1):66. doi:https://doi.org/10.1186/s13195-019-0515-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li Q, Sun X, Cui L, et al. Alterations in metamemory capacity and neural correlates in a subtype of subjective cognitive decline. Neuroimage Clin. 2022;36:103255. doi:https://doi.org/10.1016/j.nicl.2022.103255

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Q, Pan FF, Huang Q, Lo CYZ, Xie F, Guo Q. Altered metamemory precedes cognitive impairment in subjective cognitive decline with positive amyloid-beta. Front Aging Neurosci. 2022;14:1046445. doi:https://doi.org/10.3389/fnagi.2022.1046445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jessen F, Wolfsgruber S, Kleineindam L, et al. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimers Dement. Published online April 22, 2022. doi:https://doi.org/10.1002/alz.12674

  46. Bondi MW, Edmonds EC, Jak AJ, et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis. 2014;42(1):275–289. doi:https://doi.org/10.3233/JAD-140276

    Article  PubMed  PubMed Central  Google Scholar 

  47. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. doi:https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ren S, Li J, Huang L, et al. Brain Functional Alterations and Association with Cognition in People with Preclinical Subjective Cognitive Decline and Objective Subtle Cognitive Difficulties. Neuroscience. 2023;513:137–144. doi:https://doi.org/10.1016/j.neuroscience.2023.01.004

    Article  CAS  PubMed  Google Scholar 

  49. Pan F, Huang Y, Cai X, et al. Integrated algorithm combining plasma biomarkers and cognitive assessments accurately predicts brain β-amyloid pathology. Commun Med. 2023;3(1):65. doi:https://doi.org/10.1038/s43856-023-00295-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. J Stat Soft. 2012;48(2). doi:https://doi.org/10.18637/jss.v048.i02

  51. Kim S, Park JM, Han JS, et al. Age-related hearing loss in the Korea National Health and Nutrition Examination Survey. PLoS One. 2020;15(12):e0243001. doi:https://doi.org/10.1371/journal.pone.0243001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang D, Zhang H, Ma H, Zhang L, Yang L, Xu L. Hearing threshold levels and hearing loss among people in Zhejiang, China: a population-based cross-sectional study. BMJ Open. 2019;9(4):e027152. doi:https://doi.org/10.1136/bmjopen-2018-027152

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cui L, Zhang Z, Huang L, Li Q, Guo YH, Guo QH. Dual-stage cognitive assessment: a two-stage screening for cognitive impairment in primary care. BMC Psychiatry. 2023;23(1):368. doi:https://doi.org/10.1186/s12888-023-04883-w

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cohen MA, Horowitz TS, Wolfe JM. Auditory recognition memory is inferior to visual recognition memory. Proc Natl Acad Sci U S A. 2009;106(14):6008–6010. doi:https://doi.org/10.1073/pnas.0811884106

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohen MA, Evans KK, Horowitz TS, Wolfe JM. Auditory and visual memory in musicians and nonmusicians. Psychon Bull Rev. 2011;18(3):586–591. doi:https://doi.org/10.3758/s13423-011-0074-0

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gloede ME, Paulauskas EE, Gregg MK. Experience and information loss in auditory and visual memory. Q J Exp Psychol (Hove). 2017;70(7):1344–1352. doi:https://doi.org/10.1080/17470218.2016.1183686

    Article  PubMed  Google Scholar 

  57. Schmid C, Büchel C, Rose M. The neural basis of visual dominance in the context of audio-visual object processing. Neuroimage. 2011;55(1):304–311. doi:https://doi.org/10.1016/j.neuroimage.2010.11.051

    Article  PubMed  Google Scholar 

  58. Tarawneh HY, Jayakody DMP, Sohrabi HR, Martins RN, Mulders WHAM. Understanding the Relationship Between Age-Related Hearing Loss and Alzheimer’s Disease: A Narrative Review. J Alzheimers Dis Rep. 2022;6(1):539–556. doi:https://doi.org/10.3233/ADR-220035

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gagné JP, Besser J, Lemke U. Behavioral Assessment of Listening Effort Using a Dual-Task Paradigm. Trends Hear. 2017;21:2331216516687287. doi:https://doi.org/10.1177/2331216516687287

    PubMed  PubMed Central  Google Scholar 

  60. Ponticorvo S, Manara R, Pfeuffer J, et al. Cortical pattern of reduced perfusion in hearing loss revealed by ASL-MRI. Hum Brain Mapp. 2019;40(8):2475–2487. doi:https://doi.org/10.1002/hbm.24538

    Article  PubMed  PubMed Central  Google Scholar 

  61. Amieva H, Ouvrard C, Meillon C, Rullier L, Dartigues JF. Death, Depression, Disability, and Dementia Associated With Self-reported Hearing Problems: A 25-Year Study. J Gerontol A Biol Sci Med Sci. 2018;73(10):1383–1389. doi:https://doi.org/10.1093/gerona/glx250

    Article  PubMed  Google Scholar 

  62. Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: A review. Ageing Res Rev. 2021;71:101423. doi:https://doi.org/10.1016/j.arr.2021.101423

    Article  CAS  PubMed  Google Scholar 

  63. Li P, Pang K, Zhang R, Zhang L, Xie H. Prevalence and risk factors of hearing loss among the middle-aged and older population in China: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. Published online July 13, 2023. doi:https://doi.org/10.1007/s00405-023-08109-3

  64. Cruickshanks KJ, Klein R, Klein BE, Wiley TL, Nondahl DM, Tweed TS. Cigarette smoking and hearing loss: the epidemiology of hearing loss study. JAMA. 1998;279(21):1715–1719. doi:https://doi.org/10.1001/jama.279.21.1715

    Article  CAS  PubMed  Google Scholar 

  65. Zhang M, Qu T, Liu S, et al. Ethylbenzene induces hearing loss by triggering mitochondrial impairments and excess apoptosis in cochlear progenitor cells via suppressing the Wnt/β-catenin signaling. Ecotoxicol Environ Saf. 2023;254:114721. doi:https://doi.org/10.1016/j.ecoenv.2023.114721

    Article  CAS  PubMed  Google Scholar 

  66. Deal JA, Jiang K, Rawlings A, et al. Hearing, β-amyloid deposition and cognitive test performance in Black and White older adults: the ARIC-PET Study. J Gerontol A Biol Sci Med Sci. Published online July 7, 2023:glad159. doi:https://doi.org/10.1093/gerona/glad159

  67. Nadhimi Y, Llano DA. Does hearing loss lead to dementia? A review of the literature. Hear Res. 2021;402:108038. doi:https://doi.org/10.1016/j.heares.2020.108038

    Article  PubMed  Google Scholar 

  68. Neff RM, Jicha G, Hawk GS, Bush ML, McNulty B. Association of Subjective Hearing Loss and Apolipoprotein E ε4 Allele on Alzheimer’s Disease Neurodegeneration. Otol Neurotol. 2021;42(1):e15–e21. doi:https://doi.org/10.1097/MAO.0000000000002855

    Article  PubMed  Google Scholar 

  69. Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1041–1048. doi:https://doi.org/10.3233/JAD-160763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beckmann D, Feldmann M, Shchyglo O, Manahan-Vaughan D. Hippocampal Synaptic Plasticity, Spatial Memory, and Neurotransmitter Receptor Expression Are Profoundly Altered by Gradual Loss of Hearing Ability. Cereb Cortex. 2020;30(8):4581–4596. doi:https://doi.org/10.1093/cercor/bhaa061

    Article  PubMed  PubMed Central  Google Scholar 

  71. van’ tHooft JJ, Pelkmans W, Tomassen J, et al. Distinct disease mechanisms may underlie cognitive decline related to hearing loss in different age groups. J Neurol Neurosurg Psychiatry. 2023;94(4):314–320. doi:https://doi.org/10.1136/jnnp-2022-329726

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (82171198), Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), Shanghai Municipal Health Commission (202140042), and Guangdong Provincial Key S&T Program (2018B030336001). We would like to thank Jie-Hua Zhu, Xian-Qing Xie, and Yun Yang for their help with neuropsychological tests.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: LC and QHG contributed to the conception and design of the study; YYT, ZZ, YHG, FX, and QHG contributed to the acquisition and analysis of data; LC and YHG contributed to drafting the text and preparing the figures. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Fang Xie or Qi-Hao Guo.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical standards: The study was reviewed and approved by the Ethics Committee of Shanghai Sixth People’s Hospital (approval number 2019-032). It was performed in accordance with the principles of the Declaration of Helsinki. All participants provided written informed consent to participate in the study.

Additional information

How to cite this article: L. Cui, Y.-Y. Tu, Z. Zhang, et al. Associations and Potential Multiple Mechanisms between Subjective Hearing Loss and Cognitive Impairment. J Prev Alz Dis 2024; https://doi.org/10.14283/jpad.2024.62

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Tu, YY., Zhang, Z. et al. Associations and Potential Multiple Mechanisms between Subjective Hearing Loss and Cognitive Impairment. J Prev Alzheimers Dis (2024). https://doi.org/10.14283/jpad.2024.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.14283/jpad.2024.62

Key words

Navigation