Skip to main content
Log in

Neuropsychiatric Symptoms in AD: Clinical Trials Targeting Mild Behavioral Impairment: A Report from the International CTAD Task Force

  • CTAD Task Force Paper
  • Published:
The Journal of Prevention of Alzheimer's Disease Aims and scope Submit manuscript

Abstract

The International CTAD Task Force (TF) addressed challenges related to designing clinical trials for agitation in dementia, presenting accomplishments from the two previous TFs on neuropsychiatric symptoms (NPS). In addition, this TF proposed a paradigm shift in NPS assessment and management, presenting Mild Behavioral Impairment (MBI) as a clinical syndrome. MBI is marked by later-life emergent and persistent NPS in dementia-free older persons (ranging from cognitively unimpaired to subjective cognitive decline to mild cognitive impairment), which facilitates earlier detection and better prognostication of Alzheimer’s disease (AD). The TF has made the following recommendations for incorporation of NPS into AD preventative trials: (1) clinical trials targeting improvement in MBI symptoms should be undertaken; (2) treatment trials for MBI should be disease specific and confirm the diagnosis of participants using biomarkers; trials should include measures sensitive to cognitive changes in preclinical AD, which can serve as outcome measures, in addition to changes in biomarker levels; (3) as a first step, pharmacotherapeutic trials should address the full MBI complex as well as the specific symptoms/domains that constitute MBI; (4) clinical trials using problemadaptation psychotherapy to target affective MBI should be considered; and (5) MBI should be considered in AD trials of disease modifying therapies. The well-validated and widely-used MBI Checklist (MBI-C) is an appropriate symptom rating scale for these studies, as it was developed specifically to identify and measure MBI in dementia-free persons. Other scales such as the Neuropsychiatric Inventory (NPI) may be used, although administration at two timepoints may be necessary to operationalize the MBI criterion of symptom persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa N, Wübker A, De Mauléon A, Zwakhalen SM, Challis D, Leino-Kilpi H, et al. Costs of care of agitation associated with dementia in 8 European countries: results from the RightTime-PlaceCare study. J Am Med Dir Assoc. 2018;19(1):95.e1–.e10. DOI:https://doi.org/10.1016/j.jamda.2017.10.013.

    Article  PubMed  Google Scholar 

  2. Peters ME, Schwartz S, Han D, Rabins PV, Steinberg M, Tschanz J, et al. Neuropsychiat-ric symptoms as predictors of progression to severe alzheimer’s dementia and death: the Cache Country dementia progression study. Am J Psychiatry. 2015;172(5):460–5. DOI:https://doi.org/10.1176/appi.ajp.2014.14040480.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mortby ME, Ismail Z, Anstey KJ. Prevalence estimates of mild behavioral impairment in a population-based sample of pre-dementia states and cognitively healthy older adults. Int Psycho-geriatr. 2018;30(2):221–32. DOI:https://doi.org/10.1017/S1041610217001909.

    Article  Google Scholar 

  4. Food and Drug Administration. Access Data. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/205422s009lbl.pdf. Reference ID: 5171549 5.

  5. Soto M, Abushakra S, Cummings J, Siffert J, Robert P, Vellas B, et al. Progress in treatment development for neuropsychiatric symptoms in Alzheimer’s disease: focus on agitation and ag-gression. A report from the EU/US/CTAD Task Force. The journal of prevention of Alzheimer’s disease. 2015;2(3):184. DOI:https://doi.org/10.14283/jpad.2015.77.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sano M, Soto M, Carrillo M, Cummings J, Hendrix S, Mintzer J, et al. Identifying better outcome measures to improve treatment of agitation in dementia: a report from the EU/US/CTAD Task Force. The journal of prevention of Alzheimer’s disease. 2018;5(2):98–102. DOI:https://doi.org/10.14283/jjpad.2018.15.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Soto M, Andrieu S, Nourhashemi F, Ousset PJ, Ballard C, Robert P, et al. Medication de-velopment for agitation and aggression in Alzheimer disease: review and discussion of recent ran-domized clinical trial design. Int Psychogeriatr. 2014:1–17. DOI: https://doi.org/10.1017/S1041610214001720

  8. Cummings J, Mintzer J, Brodaty H, Sano M, Banerjee S, Devanand D, et al. Agitation in cognitive disorders: International Psychogeriatric Association provisional consensus clinical and research definition. Int Psychogeriatr. 2015;27(1):7–17. DOI:https://doi.org/10.1017/S1041610214001963.

    Article  PubMed  Google Scholar 

  9. Sano M, Cummings J, Auer S, Bergh S, Fischer CE, Gerritsen D, et al. Agitation in cogni-tive disorders: Progress in the International Psychogeriatric Association consensus clinical and research definition. Int Psychogeriatr. 2023:1–13. DOI:https://doi.org/10.1017/S1041610222001041.

  10. Cohen-Mansfield J. Conceptualization of agitation: results based on the Cohen-Mansfield agitation inventory and the agitation behavior mapping instrument. Int Psychogeriatr. 1997;8(S3):309–15. doi:https://doi.org/10.1017/S1041610297003530.

    Article  Google Scholar 

  11. De Medeiros K, Robert P, Gauthier S, Stella F, Politis A, Leoutsakos J, et al. The Neuro-psychiatric Inventory-Clinician rating scale (NPI-C): reliability and validity of a revised assessment of neuropsychiatric symptoms in dementia. Int Psychogeriatr. 2010;22(06):984–94. DOI:https://doi.org/10.1017/S1041610210000876.

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Mauleon A, Delrieu J, Cantet C, Vellas B, Andrieu S, Rosenberg PB, et al. Longitudi-nal Course of Agitation and Aggression in Patients with Alzheimer’s Disease in a Cohort Study: Methods, Baseline and Longitudinal Results of the A3C Study. J Prev Alzheimers Dis. 2021;8(2):199–209. DOI:https://doi.org/10.14283/jpad.2020.66.

    CAS  PubMed  Google Scholar 

  13. De Mauleon A, Ismail Z, Rosenberg P, Miller D, Cantet C, O’Gorman C, et al. Agitation in Alzheimer’s disease: Novel outcome measures reflecting the International Psychogeriatric Associa-tion (IPA) agitation criteria. Alzheimers Dement. 2021;17(10):1687–97. DOI:https://doi.org/10.1002/alz.12335.

    Article  PubMed  Google Scholar 

  14. McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research cri-teria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55. DOI:https://doi.org/10.1212/WNL.0000000000009323.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ismail Z, Smith EE, Geda Y, Sultzer D, Brodaty H, Smith G, et al. Neuropsychiatric symp-toms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behav-ioral impairment. Alzheimer’s & Dementia. 2016;12(2):195–202. DOI:https://doi.org/10.1016/j.jalz.2015.05.017.

    Article  Google Scholar 

  16. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet. 2020;396(10248):413–46. DOI:https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  Google Scholar 

  17. Showraki A, Murari G, Ismail Z, Barfett JJ, Fornazzari L, Munoz DG, et al. Cerebrospinal Fluid Correlates of Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease/Mild Cogni-tive Impairment: A Systematic Review. J Alzheimers Dis. 2019;71(2):477–501. DOI:https://doi.org/10.3233/JAD-190365.

    Article  CAS  PubMed  Google Scholar 

  18. Singh-Manoux A, Dugravot A, Fournier A, Abell J, Ebmeier K, Kivimäki M, et al. Trajec-tories of Depressive Symptoms Before Diagnosis of Dementia: A 28-Year Follow-up Study. JA-MA psychiatry. 2017;74(7):712–8. DOI:https://doi.org/10.1001/jamapsychiatry.2017.0660.

    Article  Google Scholar 

  19. Ganguli M, Kukull WA. Lost in translation: epidemiology, risk, and Alzheimer disease. Arch Neurol. 2010;67(1):107–11. DOI:https://doi.org/10.1001/archneurol.2009.311.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tapiainen V, Hartikainen S, Taipale H, Tiihonen J, Tolppanen A-M. Hospital-treated men-tal and behavioral disorders and risk of Alzheimer’s disease: A nationwide nested case-control study. Eur Psychiatry. 2017;43:92–8. DOI:https://doi.org/10.1016/j.eurpsy.2017.02.486.

    Article  CAS  PubMed  Google Scholar 

  21. Masters MC, Morris JC, Roe CM. “Noncognitive” symptoms of early Alzheimer disease A longitudinal analysis. Neurology. 2015;84:1–6. DOI:https://doi.org/10.1212/WNL.0000000000001238.

    Article  Google Scholar 

  22. Wise EA, Rosenberg PB, Lyketsos CG, Leoutsakos J-M. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alz-heimers Dement (Amst). 2019;11:333–9. DOI:https://doi.org/10.1016/j.dadm.2019.02.006.

    Article  Google Scholar 

  23. Kassam F, Chen H, Nosheny RL, McGirr A, Williams T, Ng N, et al. Cognitive profile of people with mild behavioral impairment in Brain Health Registry participants. Int Psychogeriatr. 2022:1–10. DOI:https://doi.org/10.1017/S1041610221002878.

  24. Rouse HJ, Small BJ, Schinka JA, Loewenstein DA, Duara R, Potter H. Mild behavioral impairment as a predictor of cognitive functioning in older adults. Int Psychogeriatr. 2021;33(3):285–93. doi:https://doi.org/10.1017/S1041610220000678.

    Article  PubMed  Google Scholar 

  25. Creese B, Brooker H, Ismail Z, Wesnes KA, Hampshire A, Khan Z, et al. Mild Behavioral Impairment as a Marker of Cognitive Decline in Cognitively Normal Older Adults. Am J Geriatr Psychiatry. 2019;27(8):823–34. DOI:https://doi.org/10.1016/j.jagp.2019.01.215.

    Article  PubMed  Google Scholar 

  26. Ismail Z, McGirr A, Gill S, Hu S, Forkert ND, Smith EE. Mild Behavioral Impairment and Subjective Cognitive Decline Predict Cognitive and Functional Decline. J Alzheimers Dis. 2021;80(1):459–69. DOI:https://doi.org/10.3233/JAD-201184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGirr A, Nathan S, Ghahremani M, Gill S, Smith EE, Ismail Z. Progression to Dementia or Reversion to Normal Cognition in Mild Cognitive Impairment as a Function of Late-Onset Neu-ropsychiatric Symptoms. Neurology. 2022;98(21):e2132–e9. DOI: https://doi.org/10.1212/WNL.0000000000200256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsuoka T, Ismail Z, Narumoto J. Prevalence of mild behavioral impairment and risk of dementia in a psychiatric outpatient clinic. J Alzheimers Dis. 2019;70(2):505–13. DOI:https://doi.org/10.3233/JAD-190278.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kan CN, Cano J, Zhao X, Ismail Z, Chen CL, Xu X. Prevalence, Clinical Correlates, Cog-nitive Trajectories, and Dementia Risk Associated With Mild Behavioral Impairment in Asians. J Clin Psychiatry. 2022;83(3):40123. DOI:https://doi.org/10.4088/JCP.21m14105.

    Article  Google Scholar 

  30. Wolfova K, Creese B, Aarsland D, Ismail Z, Corbett A, Ballard C, et al. Gender/Sex Dif-ferences in the Association of Mild Behavioral Impairment with Cognitive Aging. J Alzheimers Dis. 2022;88(1):345–55. DOI:https://doi.org/10.3233/JAD-220040.

    Article  CAS  PubMed  Google Scholar 

  31. Vellone DA, Ghahremani M, Ismail Z, editors. MBI-apathy, ApoE□2, and risk for Alz-heimer disease dementia. Alzheimer’s Association International Conference; 2022: ALZ. DOI:https://doi.org/10.1002/trc2.12370.

  32. Miller DS, Robert P, Ereshefsky L, Adler L, Bateman D, Cummings J, et al. Diagnostic criteria for apathy in neurocognitive disorders. Alzheimers Dement. 2021;17(12):1892–904. DOI:https://doi.org/10.1002/alz.12358.

    Article  PubMed  Google Scholar 

  33. Ebrahim IM, Ghahremani M, Camicioli R, Smith EE, Ismail Z. Effects of race, baseline cognition, and APOE on the association of affective dysregulation with incident dementia: A longi-tudinal study of dementia-free older adults. J Affect Disord. 2023;332:9–18. DOI:https://doi.org/10.1016/j.jad.2023.03.074.

    Article  PubMed  Google Scholar 

  34. Ismail Z, Ghahremani M, Amlish Munir M, Fischer CE, Smith EE, Creese B. A longitudinal study of late-life psychosis and incident dementia and the potential effects of race and cognition. Nature Mental Health. 2023;1(4):273–83. https://doi.org/10.1038/s44220-023-00043-x.

    Article  Google Scholar 

  35. Creese B, Arathimos R, Aarsland D, Ballard C, Brooker H, Hampshire A, et al. Late-life onset psychotic symptoms and incident cognitive impairment in people without dementia: Modifi-cation by genetic risk for Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2023;9(2):e12386. DOI:https://doi.org/10.1002/trc2.12386

    Google Scholar 

  36. Ismail Z, Aguera-Ortiz L, Brodaty H, Cieslak A, Cummings J, Fischer CE, et al. The Mild Behavioral Impairment Checklist (MBI-C): A Rating Scale for Neuropsychiatric Symptoms in Pre-Dementia Populations. J Alzheimers Dis. 2017;56(3):929–38. DOI:https://doi.org/10.3233/JAD-160979.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hu S, Patten S, Charlton A, Fischer K, Fick G, Smith EE, et al. Validating the Mild Behav-ioral Impairment Checklist in a Cognitive Clinic: Comparisons With the Neuropsychiatric Invento-ry Questionnaire. J Geriatr Psychiatry Neurol. 2023;36(2):107–20. DOI:https://doi.org/10.1177/08919887221093353.

    Article  PubMed  Google Scholar 

  38. Rose SYL, Doris SFY, Pui HC, Polly WCL, Zahinoor I. Reliability and Validity of the Traditional Chinese Version of the Mild Behavioral Impairment–Checklist Among Persons With Mild Cognitive Impairment–A Validation Study. J Geriatr Psychiatry Neurol. 2023;36(1):26–38. DOI:https://doi.org/10.1177/08919887221093363.

    Article  Google Scholar 

  39. Saari T, Smith EE, Ismail Z. Network analysis of impulse dyscontrol in mild cognitive im-pairment and subjective cognitive decline. Int Psychogeriatr. 2022;34(6):553–62. DOI:https://doi.org/10.1017/S1041610220004123.

    Article  CAS  PubMed  Google Scholar 

  40. Mallo SC, Ismail Z, Pereiro AX, Facal D, Lojo-Seoane C, Campos-Magdaleno M, et al. Assessing mild behavioral impairment with the Mild behavioral impairment-checklist in people with mild cognitive impairment. J Alzheimers Dis. 2018;66(1):83–95. DOI:https://doi.org/10.3233/JAD-180131.

    Article  PubMed  Google Scholar 

  41. Mallo SC, Ismail Z, Pereiro AX, Facal D, Lojo-Seoane C, Campos-Magdaleno M, et al. Assessing mild behavioral impairment with the mild behavioral impairment checklist in people with subjective cognitive decline. Int Psychogeriatr. 2019;31(2):231–9. DOI:https://doi.org/10.1017/S1041610218000698.

    Article  PubMed  Google Scholar 

  42. Creese B, Griffiths A, Brooker H, Corbett A, Aarsland D, Ballard C, et al. Profile of mild behavioral impairment and factor structure of the Mild Behavioral Impairment Checklist in cogni-tively normal older adults. Int Psychogeriatr. 2020;32(6):705–17. DOI:https://doi.org/10.1017/S1041610219001200.

    Article  PubMed  Google Scholar 

  43. Matsuoka T, Imai A, Narumoto J. Neuroimaging of mild behavioral impairment: A sys-tematic review. Psychiatry and Clinical Neurosciences Reports. 2023;2(1):e81. https://doi.org/10.1002/pcn5.81.

    Article  Google Scholar 

  44. Matuskova V, Ismail Z, Nikolai T, Markova H, Cechova K, Nedelska Z, et al. Mild behav-ioral impairment is associated with atrophy of entorhinal cortex and hippocampus in a memory clinic cohort. Frontiers in Aging Neuroscience. 2021;13:236. DOI:https://doi.org/10.3389/fnagi.2021.643271.

    Article  Google Scholar 

  45. Gill S, Wang M, Mouches P, Rajashekar D, Sajobi T, MacMaster FP, et al. Neural corre-lates of the impulse dyscontrol domain of mild behavioral impairment. Int J Geriatr Psychiatry. 2021;36(9):1398–406. DOI:https://doi.org/10.1002/gps.5540.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ghahremani M, Nathan S, Smith EE, McGirr A, Goodyear B, Ismail Z. Functional connec-tivity and mild behavioral impairment in dementia-free elderly. Alzheimers Dement (N Y). 2023;9(1):e12371. DOI:https://doi.org/10.1002/trc2.12371.

    Article  PubMed  Google Scholar 

  47. Matsuoka T, Ueno D, Ismail Z, Rubinstein E, Uchida H, Mimura M, et al. Neural Corre-lates of Mild Behavioral Impairment: A Functional Brain Connectivity Study Using Resting-State Functional Magnetic Resonance Imaging. J Alzheimers Dis. 2021;83(3):1221–31. DOI:https://doi.org/10.3233/JAD-210628.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lussier FZ, Pascoal TA, Chamoun M, Therriault J, Tissot C, Savard M, et al. Mild behav-ioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimer’s & Dementia. 2020;16(1):192–9. DOI:https://doi.org/10.1002/alz.12007.

    Article  Google Scholar 

  49. Johansson M, Stomrud E, Insel PS, Leuzy A, Johansson PM, Smith R, et al. Mild behav-ioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl Psychia-try. 2021;11(1):76. DOI:https://doi.org/10.1038/s41398-021-01206-z.

    Article  CAS  Google Scholar 

  50. Ruthirakuhan M, Ismail Z, Herrmann N, Gallagher D, Lanctôt KL. Mild behavioral im-pairment is associated with progression to Alzheimer’s disease: A clinicopathological study. Alz-heimer’s & Dementia. 2022;18(11):2199–208. DOI:https://doi.org/10.1002/alz.12519.

    Article  Google Scholar 

  51. Naude J, Gill S, Hu S, McGirr A, Forkert N, Monchi O, et al. Plasma Neurofilament Light: a marker of cognitive decline in Mild Behavioural Impairment. J Alzheimers Dis. 2020;76(3):1017–27. DOI:https://doi.org/10.3233/JAD-200011.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miao R, Chen HY, Gill S, Naude J, Smith EE, Ismail Z, et al. Plasma beta-Amyloid in Mild Behavioural Impairment - Neuropsychiatric Symptoms on the Alzheimer’s Continuum. J Ger-iatr Psychiatry Neurol. 2022;35(3):434–41. DOI:https://doi.org/10.1177/08919887211016068.

    Article  Google Scholar 

  53. Ghahremani M, Wang M, Chen H-Y, Zetterberg H, Smith E, Ismail Z, et al. Plasma Phos-phorylated Tau at Threonine 181 and Neuropsychiatric Symptoms in Preclinical and Prodromal Alzheimer Disease. Neurology. 2023;100(7):e683–e93. DOI:https://doi.org/10.1212/WNL.0000000000201517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karrer TM, McLaughlin CL, Guaglianone CP, Samanez-Larkin GR. Reduced serotonin receptors and transporters in normal aging adults: a meta-analysis of PET and SPECT imaging studies. Neurobiol Aging. 2019;80:1–10. DOI:https://doi.org/10.1016/j.neurobiolaging.2019.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith GS, Barrett FS, Joo JH, Nassery N, Savonenko A, Sodums DJ, et al. Molecular imaging of serotonin degeneration in mild cognitive impairment. Neurobiol Dis. 2017;105:33–41. DOI:https://doi.org/10.1016/j.nbd.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chakraborty S, Lennon JC, Malkaram SA, Zeng Y, Fisher DW, Dong H. Serotonergic system, cognition, and BPSD in Alzheimer’s disease. Neurosci Lett. 2019;704:36–44. DOI:https://doi.org/10.1016/j.neulet.2019.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z, et al. Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA. 2014;311(7):682–91. DOI:https://doi.org/10.1001/jama.2014.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burke SL, Maramaldi P, Cadet T, Kukull W. Decreasing hazards of Alzheimer’s disease with the use of antidepressants: mitigating the risk of depression and apolipoprotein E. Int J Geriatr Psychiatry. 2018;33(1):200–11. DOI:https://doi.org/10.1002/gps.4709.

    Article  PubMed  Google Scholar 

  59. Sheline YI, Snider BJ, Beer JC, Seok D, Fagan AM, Suckow RF, et al. Effect of escital-opram dose and treatment duration on CSF Abeta levels in healthy older adults: A controlled clini-cal trial. Neurology. 2020;95(19):e2658–e65. DOI:https://doi.org/10.1212/WNL.0000000000010725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cummings J. The Neuropsychiatric Inventory: Development and Applications. J Geriatr Psychiatry Neurol. 2020;33(2):73–84. DOI:https://doi.org/10.1177/0891988719882102.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Olin JT, Schneider LS, Katz IR, Meyers BS, Alexopoulos GS, Breitner JC, et al. Provi-sional diagnostic criteria for depression of Alzheimer disease. The American journal of geriatric psychiatry. 2002;10(2):125–8. DOI:https://doi.org/10.1097/00019442-200203000-00003.

    Article  PubMed  Google Scholar 

  62. Cummings JL. The Neuropsychiatric Inventory Assessing psychopathology in dementia patients. Neurology. 1997;48(5 Suppl 6):10S–6S. DOI:https://doi.org/10.1212/wnl.48.5_suppl_6.10s.

    Google Scholar 

  63. Fischer CE, Ismail Z, Youakim JM, Creese B, Kumar S, Nuñez N, et al. Revisiting criteria for psychosis in Alzheimer’s disease and related dementias: toward better phenotypic classification and biomarker research. J Alzheimers Dis. 2020;73(3):1143–56. DOI:https://doi.org/10.3233/JAD-190828.

    Article  PubMed  Google Scholar 

  64. Leonpacher AK, Peters ME, Drye LT, Makino KM, Newell JA, Devanand D, et al. Effects of citalopram on neuropsychiatric symptoms in Alzheimer’s dementia: evidence from the CitAD study. Am J Psychiatry. 2016;173(5):473–80. DOI:https://doi.org/10.1176/appi.ajp.2016.15020248.

    Article  PubMed  Google Scholar 

  65. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci. 2016;17(2):189. DOI:https://doi.org/10.3390/ijms17020189.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Brooker H, Williams G, Hampshire A, Corbett A, Aarsland D, Cummings J, et al. FLAME: A computerized neuropsychological composite for trials in early dementia. Alzheimers Dement (Amst). 2020;12(1):e12098. DOI:https://doi.org/10.1002/dad2.12098.

    PubMed  Google Scholar 

  67. Hackett K, Krikorian R, Giovannetti T, Melendez-Cabrero J, Rahman A, Caesar EE, et al. Utility of the NIH Toolbox for assessment of prodromal Alzheimer’s disease and dementia. Al-zheimers Dement (Amst). 2018;10:764–72. DOI:https://doi.org/10.1016/j.dadm.2018.10.002.

    Article  Google Scholar 

  68. Cirrito JR, Wallace CE, Yan P, Davis TA, Gardiner WD, Doherty BM, et al. Effect of es-citalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology. 2020;95(19):e2666–e74. DOI:https://doi.org/10.1212/WNL.0000000000010733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ballard C, Banister C, Khan Z, Cummings J, Demos G, Coate B, et al. Evaluation of the safety, tolerability, and efficacy of pimavanserin versus placebo in patients with Alzheimer’s dis-ease psychosis: a phase 2, randomised, placebo-controlled, double-blind study. The Lancet Neu-rology. 2018;17(3):213–22. DOI:https://doi.org/10.1016/S1474-4422(18)30039-5.

    Article  CAS  Google Scholar 

  70. McCombie C, Cort E, Gould RL, Kiosses DN, Alexopoulos GS, Howard R, et al. Adapt-ing and optimizing Problem Adaptation Therapy (PATH) for people with mild-moderate dementia and depression. The American Journal of Geriatric Psychiatry. 2021;29(2):192–203. DOI:https://doi.org/10.1016/j.jagp.2020.05.025.

    Article  PubMed  Google Scholar 

  71. Kiosses DN. Problem Adaptation Therapy (PATH): Origins, Current Status, and Future Directions. The American Journal of Geriatric Psychiatry. 2022;30(8):922–4. DOI:https://doi.org/10.1016/j.jagp.2022.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kanellopoulos D, Rosenberg P, Ravdin LD, Maldonado D, Jamil N, Quinn C, et al. De-pression, cognitive, and functional outcomes of Problem Adaptation Therapy (PATH) in older adults with major depression and mild cognitive deficits. Int Psychogeriatr. 2020;32(4):485–93. DOI:https://doi.org/10.1017/S1041610219001716.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cummings JL, Schneider L, Tariot PN, Kershaw PR, Yuan W. Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer’s disease. Am J Psychiatry. 2004;161(3):532–8. DOI:https://doi.org/10.1176/appi.ajp.161.3.532

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MS has received support from the National French Health Minister (DGOS): PREPS 2019, 19-0027; PBR has received support from the National Institute on Aging (AG054771, AG050515) as well as the Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease. CL has received support from the National Institute on Aging (R01 AG052510; R01 AG031348P30 AG066507); Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease including significant contributions from the Richman Family Foundation, the Rick Sharp Alzheimer’s Foundation, the Sharp Family Foundation and others. ZI is funded by the Canadian Institutes of Health Research (BCA2633). He has also received support from the ADDF, Brain Canada, CCNA, Gordie Howe C.A.R.E.S, NIA, and Weston Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Maria Soto.

Ethics declarations

Conflict of interest: The Task Force was partially funded by registration fees from industrial participants. These corporations placed no restrictions on this work. MS has served on advisory boards/consultancies Acadia, Otsuka, Avanir, Medesis Pharma, Servier, Eisai, Roche, Biogen, Lilly and Ethypharm. PBR has received research grants from the National Institutes of Aging, Alzheimer’s Clinical Trials Consortium, Richman Family Precision Medicine Center of Excellence on Alzheimer’s Disease, Eisai, Functional Neuromodulation, and Lilly; honoraria from GLG, Leerink, Cerevel, Cerevance, Bioxcel, Sunovion, Acadia, Medalink, Novo Nordisk, Noble Insights, TwoLabs, Otsuka, Lundbeck, Acadia, MedaCorp, ExpertConnect, HMP Global, Synaptogenix, and Neurology Week. CL has received support from Functional Neuromodulation, Ltd, Orion, Servier, Astellas, SVB Leerink, Roche, Avanir, Karuna, Maplight,Axsome, GW Research Limited, Merck, EXCIVA GmbH, Otsuka, and IntraCellular Therapies. DM is a full-time employee of Signant Health. MC has no disclosures. BV is an investigator in clinical trials sponsored by Biogen, Lilly, Roche, Eisai, Pfizer, Pierre Fabre Pharmaceuticals and the Toulouse University Hospital. He has served as SAB member for Biogen, Alzheon, Green Valley, Norvo Nordisk, Longeveron, Rejuvenate Biomed Clinical Pfizer, Eisai France, Advisory Board Meeting - but received no personal compensation. He has served as consultant and/or SAB member for Roche, Lilly, Eisai, TauX, Cerecin with personal compensation. CB has Grants and personal fees from Acadia, Lundbeck, Synexus, Novo Nordisk, and Enterin; and personal fees from Janssen, GW Pharma, TauRx, Biogen, Orion, Roche, Otsuka, Novartis, Eli Lilly, Suven, Sunovion, ADDEX and Exciva. SG has been a member of SAB for Alzheon, AmyriAD, Eisai Canada, EnigmaUSA, Lilly Canada, Medesis, Otsuka Canada, and TauRx, and has given lectures for Biogen Canada, and Lundbeck Korea. ZI has served on advisory boards/consultancies for Acadia, Biogen, Lundbeck, Otsuka, Roche, and the Canadian Agencies for Drugs and Technologies in Health and serves on the Government of Canada Ministerial Advisory Board for Dementia. He has received honoraria from Lundbeck/Otsuka and his institution has received fees from Acadia, Biogen, and Roche in lieu.

Additional information

Last co authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, M., Rosenberg, P., Ballard, C. et al. Neuropsychiatric Symptoms in AD: Clinical Trials Targeting Mild Behavioral Impairment: A Report from the International CTAD Task Force. J Prev Alzheimers Dis 11, 56–64 (2024). https://doi.org/10.14283/jpad.2023.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.14283/jpad.2023.125

Key words

Navigation