Skip to main content
Log in

Cadmium(II) Complexes Adsorbed on Clay Edge Surfaces: Insight from First Principles Molecular Dynamics Simulation

  • Published:
Clays and Clay Minerals

Abstract

Aiming to identify the complexing mechanisms of heavy metal cations on edge surfaces of 2:1-type clay minerals, systemic first-principles molecular dynamics (FPMD) simulations were conducted and the microscopic structures and complex free energies were obtained. Taking Cd(II) as a model cation, the structures on both (010) and (110) edges of the complexes were derived for the three possible binding sites (≡SiO, ≡Al(OH)2/≡AlOH≡AlSiO, and vacant sites). The stable complexes adsorbed on the three binding sites on both terminations had similar structures. The free energies of the complexes on (010) edges were calculated by using the constrained FPMD method. The free energies of complexes on the ≡SiO and ≡Al(OH)2 sites were similar and they were both significantly lower than the free energy of the complex on the octahedral vacant site. In association with the concept of high energy site (HES) and low energy site (LES) in the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model, the vacant site was assigned to HES and the other two sites to LES, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, V. and Rosso, K.M. (2013) Insights into the mechanism of Fe(II) adsorption and oxidation at Fe-clay mineral surfaces from first-principles calculations. Journal of Physical Chemistry C, 117, 22880–22886.

    Article  Google Scholar 

  • Anderson, R.L., Ratcliffe, I., Greenwell, H.C., Williams, P.A., Cliffe, S., and Coveney, P.V. (2010) Clay swelling — a challenge in the oilfield. Earth-Science Reviews, 98, 201–216.

    Article  Google Scholar 

  • Baeyens, B. and Bradbury, M.H. (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 1. Titration and sorption measurements. Journal of Contaminant Hydrology, 27, 199–222.

    Article  Google Scholar 

  • Barbier, F., Duc, G., and Petit-Ramel, M. (2000) Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 166, 153–159.

    Article  Google Scholar 

  • Bergaya, F. and Lagaly, G. (2013) General introduction: Clays, clay minerals, and clay science. Ch. 1. Pp. 1–19 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Google Scholar 

  • Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T., and Tadanier, C.J. (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity. Clays and Clay Minerals, 51, 359–371.

    Article  Google Scholar 

  • Bleam, W.F. (1993) Atomic theories of phyllosilicates-quantum-chemistry, statistical-mechanics, electrostatic theory, and crystal-chemistry. Reviews of Geophysics, 31, 51–73.

    Article  Google Scholar 

  • Boek, E.S. and Sprik, M. (2003) Ab initio molecular dynamics study of the hydration of a sodium smectite clay. Journal of Physical Chemistry B, 107, 3251–3256.

    Article  Google Scholar 

  • Boulet, P., Greenwell, H.C., Stackhouse, S., and Coveney, P.V. (2006) Recent advances in understanding the structure and reactivity of clays using electronic structure calculations. Journal of Molecular Structure-Theochem, 762, 33–48.

    Article  Google Scholar 

  • Bradbury, M.H. and Baeyens, B. (1997) A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 2. Modelling. Journal of Contaminant Hydrology, 27, 223–248.

    Article  Google Scholar 

  • Bradbury, M.H. and Baeyens, B. (1999) Modelling the sorption of Zn and Ni on Ca-montmorillonite. Geochimica et Cosmochimica Acta, 63, 325–336.

    Article  Google Scholar 

  • Bradbury, M.H. and Baeyens, B. (2005a) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, 69, 875–892.

    Article  Google Scholar 

  • Bradbury, M.H. and Baeyens, B. (2005b) Experimental measurements and modeling of sorption competition on montmorillonite. Geochimica et Cosmochimica Acta, 69, 4187–4197.

    Article  Google Scholar 

  • Bradbury, M.H., Baeyens, B., Geckeis, H., and Rabung, T. (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: Surface complexation modelling. Geochimica et Cosmochimica Acta, 69, 5403–5412.

    Article  Google Scholar 

  • Brindley, G.W. and Brown, G. (editors) (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society Monograph 5, London.

  • Brigatti, M.F., Galán, E., and Theng, B.K.G. (2013) Structure and mineralogy of clay minerals. Pp. 21–81 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Article  Google Scholar 

  • Car, R. and Parrinello, M. (1985) Unified approach for molecular-dynamics and density-functional theory. Physical Review Letters, 55, 2471–2474.

    Article  Google Scholar 

  • Carter, E.A., Ciccotti, G., Hynes, J.T., and Kapral, R. (1989) Constrained reaction coordinate dynamics for the simulation of rare events. Chemical Physics Letters, 156, 472–477.

    Article  Google Scholar 

  • Churakov, S.V. (2007) Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study. Geochimica et Cosmochimica Acta, 71, 1130–1144.

    Article  Google Scholar 

  • Churakov, S.V. and Kosakowski, G. (2010) An ab initio molecular dynamics study of hydronium complexation in Na-montmorillonite. Phi losophical Magazine, 90, 2459–2474.

    Article  Google Scholar 

  • Churakov, S.V. and Dähn, R. (2012) Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy. Environmental Science & Technology, 46, 5713–5719.

    Article  Google Scholar 

  • Cygan, R.T., Greathouse, J.A., Heinz, H., and Kalinichev, A.G. (2009) Molecular models and simulations of layered materials. Journal of Materials Chemistry, 19, 2470.

    Google Scholar 

  • Dähn, R., Scheidegger, A.M., Manceau, A., Schlegel, M.L., Baeyens, B., Bradbury, M.H., Chateigner, D. (2003) Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine s tructure study. Geochimica et Cosmochimica Acta, 67, 1–15.

    Article  Google Scholar 

  • Dähn, R., Baeyens, B., and Bradbury, M.H. (2011) Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS — the strong/weak site concept in the 2SPNE SC/CE sorption model. Geochimica et Cosmochimica Acta, 75, 5154–5168.

    Article  Google Scholar 

  • Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. Pp. 177–260 in: Mineral-Water Interface Geochemistry (M.F. Hochella and A.F. White, editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Chantilly, Virginia, USA.

    Article  Google Scholar 

  • Ensing, B., Meijer, E.J., Blochl, P.E., and Baerends, E.J. (2001) Solvation effects on the S(N)2 reaction between CH3Cl and Cl- in water. Journal of Physical Chemistry A, 105, 3300–3310.

    Article  Google Scholar 

  • Evans, L.J. (1989) Chemistry of metal retention by soils — several processes are explained. Environmental Science & Technology, 23, 1046–1056.

    Article  Google Scholar 

  • Gaines, G.L. and Thomas, H.C. (1953) Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. Journal of Chemical Physics, 21, 714–718.

    Article  Google Scholar 

  • Geckeis, H., Luetzenkirchen, J., Polly, R., Rabung, T., and Schmidt, M. (2013) Mineral-water interface reactions of actinides. Chemical Reviews, 113, 1016–1062.

    Article  Google Scholar 

  • Goedecker, S., Teter, M., and Hutter, J. (1996) Separable dual-space Gaussian pseudopotentials. Physical Review B, 54, 1703–1710.

    Article  Google Scholar 

  • Gu, X. and Evans, L.J. (2008) Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite. Geochimica et Cosmochimica Acta, 72, 267–276.

    Article  Google Scholar 

  • Gu, X., Evans, L.J., and Barabash, S.J. (2010) Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite. Geochimica et Cosmochimica Acta, 74, 5718–5728.

    Article  Google Scholar 

  • Gu, X., Sun, J., and Evans, L.J. (2014) The development of a multi-surface soil speciation model for Cd (II) and Pb (II): comparison of two approaches for metal adsorption to clay fractions. Applied Geochemistry, 47, 99–108.

    Article  Google Scholar 

  • Ikhsan, J., Wells, J.D., Johnson, B.B., and Angove, M.J. (2005) Surface complexation modeling of the sorption of Zn(II) by montmorillonite. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 252, 33–41.

    Google Scholar 

  • Jo, H.Y., Benson, C.H., and Edil, T.B. (2006) Rate-limited cation exchange in thin bentonitic barrier layers. Canadian Geotechnical Journal, 43, 370–391.

    Article  Google Scholar 

  • Kremleva, A., Krueger, S., and Roesch, N. (2009) Uranyl adsorption at solvated (010) edge surfaces of kaolinite. Abstracts of Papers of the American Chemical Society, 237.

  • Kremleva, A., Krueger, S., and Roesch, N. (2011) Uranyl adsorption at (010) edge surfaces of kaolinite: a density functional study. Geochimica et Cosmochimica Acta, 75, 706–718.

    Article  Google Scholar 

  • Kremleva, A., Martorell, B., Krueger, S., and Roesch, N. (2012) Uranyl adsorption on solvated edge surfaces of pyrophyllite: a DFT model study. Physical Chemistry Chemical Physics, 14, 5815–5823.

    Article  Google Scholar 

  • Kremleva, A., Krueger, S., and Roesch, N. (2015) Uranyl adsorption at solvated edge surfaces of 2:1 smectites. A density functional study. Physical Chemistry Chemical Physics, 17, 13757–13768.

    Article  Google Scholar 

  • Kubicki, J.D., Kwon, K.D., Paul, K.W., and Sparks, D.L. (2007) Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite. European Journal of Soil Science, 58, 932–944.

    Article  Google Scholar 

  • Lagaly, G. and Dékány, I., (2013) Colloid clay science. Pp. 243–345 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Article  Google Scholar 

  • Lippert, G., Hutter, J., and Parrinello, M. (1997) A hybrid Gaussian and plane wave density functional scheme. Molecular Physics, 92, 477–487.

    Article  Google Scholar 

  • Liu, X. and Lu, X. (2006) A thermodynamic understanding of clay-swelling inhibition by potassium ions. Angewandte Chemie, 45, 6300–6303.

    Article  Google Scholar 

  • Liu, X., Lu, X., Wang, R., and Zhou, H. (2008) Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochimica et Cosmochimica Acta, 72, 1837–1847.

    Article  Google Scholar 

  • Liu, X., Lu, X., Wang, R., Meijer, E.J., and Zhou, H. (2011) Acidities of confined water in interlayer space of clay minerals. Geochimica et Cosmochimica Acta, 75, 4978–4986.

    Article  Google Scholar 

  • Liu, X., Lu, X., Meijer, E.J., Wang, R., and Zhou, H. (2012a) Atomic-scale structures of interfaces between phyllosilicate edges and water. Geochimica et Cosmochimica Acta, 81, 56–68.

    Article  Google Scholar 

  • Liu, X., Lu, X., Wang, R., Meijer, E.J., Zhou, H., and He, H. (2012b) Atomic scale structures of interfaces between kaolinite edges and water. Geochimica et Cosmochimica Acta, 92, 233–242.

    Article  Google Scholar 

  • Liu, X., Meijer, E.J., Lu, X., and Wang, R. (2012c) First-principles molecular dynamics insight into Fe2+ complexes adsorbed on edge surfaces of clay minerals. Clays and Clay Minerals, 60, 341–347.

    Article  Google Scholar 

  • Liu, X., Cheng, J., Sprik, M., Lu, X., and Wang, R. (2013a) Understanding surface acidity of gibbsite with first principles molecular dynamics simulations. Geochimica et Cosmochimica Acta, 120, 487–495.

    Article  Google Scholar 

  • Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer, E.J., and Wang, R. (2013b) Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica et Cosmochimica Acta, 117, 180–190.

    Article  Google Scholar 

  • Liu, X., Cheng, J., Sprik, M., Lu, X., and Wang, R. (2014) Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulat ions. Geochimica et Cosmochimica Acta, 140, 410–417.

    Article  Google Scholar 

  • Martorell, B., Kremleva, A., Krueger, S., and Roesch, N. (2010) Density functional model study of uranyl adsorption on the solvated (001) surface of kaolinite. Journal of Physical Chemistry C, 114, 13287–13294.

    Article  Google Scholar 

  • Marx, D. and Hutter, J. (2009) Ab initio Molecular Dynamics — Basic Theory and Advance Methods. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Mooney, R.W., Keenan, A.G., and Wood, L.A. (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. Journal of the American Chemical Society, 74, 1367–1371.

    Article  Google Scholar 

  • Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.

    Article  Google Scholar 

  • Pye, C.C., Tomney, M.R., and Rudolph, W.W. (2006) Cadmium hydration: hexacoordinate or heptacoordinate? Canadian Journal of Analytical Sciences and Spectroscopy, 51, 140–146.

    Google Scholar 

  • Rudolph, W.W. and Pye, C.C. (1998) Raman spectroscopic measurements and ab initio molecular orbital studies of cadmium(II) hydration in aqueous solution. Journal of Physical Chemistry B, 102, 3564–3573.

    Article  Google Scholar 

  • Schlegel, M.L. and Manceau, A. (2013) Binding mechanism of Cu(II) at the clay-water interface by powder and polarized EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 113, 113–124.

    Article  Google Scholar 

  • Schoonheydt, R.A. and Johnston, C.T. (2013) Surface and interface chemistry of clay minerals. Pp. 139–172 in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Article  Google Scholar 

  • Soltermann, D., Baeyens, B., Bradbury, M.H., and Fernandes, M.M. (2014) Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling. Environmental Science & Technology, 48, 8698–8705.

    Article  Google Scholar 

  • Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press, New York.

    Google Scholar 

  • Sposito, G., Skipper, N.T., Sutton, R., Park, S.H., Soper, A.K., and Greathouse, J.A. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences of the United States of America, 96, 3358–3364.

    Article  Google Scholar 

  • Sprik, M. (1998) Coordination numbers as reaction coordinates in constrained molecular dynamics. Faraday Discussions, 110, 437–445.

    Article  Google Scholar 

  • Sprik, M. and Ciccotti, G. (1998) Free energy from constrained molecular dynamics. Journal of Chemical Physics, 109, 7737–7744.

    Article  Google Scholar 

  • Sprik, M. (2000) Computation of the pK of liquid water using coordination constraints. Chemical Physics, 258, 139–150.

    Article  Google Scholar 

  • Tournassat, C., Grangeon, S., Leroy, P., and Giffaut, E. (2013) Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges. American Journal of Science, 313, 395–451.

    Article  Google Scholar 

  • Tunega, D., Gerzabek, M.H., and Lischka, H. (2004) Ab initio molecular dynamics study of a monomolecular water layer on octahedral and tetrahedral kaolinite surfaces. Journal of Physical Chemistry B, 108, 5930–5936.

    Article  Google Scholar 

  • Turner, D.R., Bertetti, F.P., and Pabalan, R.T. (2006) Applying surface complexation modeling to radionuclide sorption. Pp. 553–604 in: Interface Science and Technology (L. Johannes, editor). Elsevier.

    Google Scholar 

  • VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., and Hutter, J. (2005) QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications, 167, 103–128.

    Article  Google Scholar 

  • Viani, A., Gaultieri, A.F., and Artioli, G. (2002) The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966–975.

    Article  Google Scholar 

  • Wagner, J.F. (2013) Clay liners and waste disposal. Pp. 663–676 in: Handbook Of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Article  Google Scholar 

  • White, G.N. and Zelazny, L.W. (1988) Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays and Clay Minerals, 36, 141–146.

    Article  Google Scholar 

  • Yuan, G.D., Theng, B.K.G., Churchman, G.J., and Gates, W.P. (2013) Clays and clay minerals for pollution control. Pp. 587–644. in: Handbook of Clay Science (F. Bergaya and G. Lagaly, editors). Developments in Clay Science, 5A. Elsevier.

    Article  Google Scholar 

  • Zachara, J.M., Smith, S.C., McKinley, J.P., and Resch, C.T. (1993) Cadmium sorption on specimen and soil smectites in sodium and calcium electrolytes. Soil Science Society of America Journal, 57, 1491–1501.

    Article  Google Scholar 

  • Zachara, J.M. and Smith, S.C. (1994) Edge complexation reactions of cadmium on specimen and soil-derived smectite. Soil Science Society of America Journal, 58, 762–769.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiandong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Liu, X., Lu, X. et al. Cadmium(II) Complexes Adsorbed on Clay Edge Surfaces: Insight from First Principles Molecular Dynamics Simulation. Clays Clay Miner. 64, 337–347 (2016). https://doi.org/10.1346/CCMN.2016.0640402

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2016.0640402

Key Words

Navigation