Skip to main content

Advertisement

Log in

Change Impact of Body Composition During Neoadjuvant Chemoradiotherapy in Patients with Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma Undergoing Pancreatectomy

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The change impact of body composition during neoadjuvant therapy on clinical outcomes in patients with pancreatic ductal adenocarcinoma (PDAC) remains unclear. The aim of this study was to investigate the association between changes in body composition during neoadjuvant chemoradiotherapy (NACRT) and postoperative outcomes in patients with PDAC undergoing pancreatectomy, using three-dimensional images.

Methods

We reviewed 66 consecutive patients with resectable/borderline resectable PDAC receiving gemcitabine and S-1 with radiotherapy between April 2010 and June 2016. Body compositions were evaluated pre- and post-NACRT. All patients were hospitalized and supplied with regulated diet during NACRT treatment.

Results

Psoas major muscle volume index (PMI), abdominal fat volume index, and visceral fat volume index decreased significantly after NACRT (P < 0.0001, P < 0.0001, P < 0.0001, respectively). The post-NACRT CA19-9 level decreased significantly in the small-PMI-decrease group compared with the large-PMI-decrease group (P = 0.046). Recurrence-free survival (RFS) and overall survival (OS) of the large-PMI-decrease group were significantly poorer than those of the small-PMI-decrease group (P = 0.002, P = 0.006, respectively). On the other hand, there were no significant differences in RFS and OS between groups with high and low PMI, at the point of either pre-NACRT (P = 0.117, P = 0.123, respectively) or post-NACRT (P = 0.065, P = 0.064, respectively). Multivariate analysis identified a large percentage decrease in PMI as an independent risk factor for recurrence and death (P = 0.003, P = 0.002, respectively).

Conclusions

Loss of skeletal muscle mass during NACRT was an independent risk factor for survival in patients with PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishido K, Hakamada K, Kimura N, Miura T, Wakiya T. Essential updates 2018/2019: current topics in the surgical treatment of pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg. 2021;5(1):7–23. https://doi.org/10.1002/ags3.12379.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  3. Groot VP, Gemenetzis G, Blair AB, et al. Defining and predicting early recurrence in 957 patients with resected pancreatic ductal adenocarcinoma. Ann Surg. 2019;269(6):1154–62. https://doi.org/10.1097/SLA.0000000000002734.

    Article  PubMed  Google Scholar 

  4. Mokdad AA, Minter RM, Zhu H, et al. Neoadjuvant therapy followed by resection versus upfront resection for resectable pancreatic cancer: a propensity score matched analysis. J Clin Oncol. 2017;35(5):515–22. https://doi.org/10.1200/jco.2016.68.5081.

    Article  PubMed  Google Scholar 

  5. Okano K, Suto H, Oshima M, et al. A prospective phase ii trial of neoadjuvant s-1 with concurrent hypofractionated radiotherapy in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2017;24(9):2777–84. https://doi.org/10.1245/s10434-017-5921-4.

    Article  PubMed  Google Scholar 

  6. Motoi F, Kosuge T, Ueno H, et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Jpn J Clin Oncol. 2019;49(2):190–4. https://doi.org/10.1093/jjco/hyy190.

    Article  PubMed  Google Scholar 

  7. Versteijne E, Suker M, Groothuis K, et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the dutch randomized phase III PREOPANC Trial. J Clin Oncol. 2020;38(16):1763–73. https://doi.org/10.1200/jco.19.02274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eguchi H, Takeda Y, Takahashi H, et al. A prospective, open-label, multicenter phase 2 trial of neoadjuvant therapy using full-dose gemcitabine and S-1 concurrent with radiation for resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2019;26(13):4498–505. https://doi.org/10.1245/s10434-019-07735-8.

    Article  PubMed  Google Scholar 

  9. van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. New Engl J Med. 2012;366(22):2074–84. https://doi.org/10.1056/NEJMoa1112088.

    Article  PubMed  Google Scholar 

  10. Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. https://doi.org/10.1016/s1470-2045(10)70218-7.

    Article  PubMed  Google Scholar 

  11. Pamoukdjian F, Bouillet T, Levy V, Soussan M, Zelek L, Paillaud E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr. 2018;37(4):1101–13. https://doi.org/10.1016/j.clnu.2017.07.010.

    Article  PubMed  Google Scholar 

  12. Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. https://doi.org/10.1016/s1470-2045(08)70153-0.

    Article  PubMed  Google Scholar 

  13. Takeda T, Sasaki T, Suzumori C, et al. The impact of cachexia and sarcopenia in elderly pancreatic cancer patients receiving palliative chemotherapy. Int J Clin Oncol. 2021;26(7):1293–303. https://doi.org/10.1007/s10147-021-01912-0.

    Article  CAS  PubMed  Google Scholar 

  14. Rutten IJ, van Dijk DP, Kruitwagen RF, Beets-Tan RG, Olde Damink SW, van Gorp T. Loss of skeletal muscle during neoadjuvant chemotherapy is related to decreased survival in ovarian cancer patients. J Cachexia Sarcopenia Muscle. 2016;7(4):458–66. https://doi.org/10.1002/jcsm.12107.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kamitani N, Migita K, Matsumoto S, et al. Association of skeletal muscle loss with the long-term outcomes of esophageal cancer patients treated with neoadjuvant chemotherapy. Surg Today. 2019. https://doi.org/10.1007/s00595-019-01846-1.

    Article  PubMed  Google Scholar 

  16. Daly LE, Ni Bhuachalla EB, Power DG, Cushen SJ, James K, Ryan AM. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer. J Cachexia Sarcopenia Muscle. 2018;9(2):315–25. https://doi.org/10.1002/jcsm.12267.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kobayashi A, Kaido T, Hamaguchi Y, et al. Impact of Sarcopenic obesity on outcomes in patients undergoing hepatectomy for hepatocellular carcinoma. Ann Surg. 2019;269(5):924–31. https://doi.org/10.1097/SLA.0000000000002555.

    Article  PubMed  Google Scholar 

  18. Onodera T, Goseki N, Kosaki G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi. 1984;85(9):1001–5.

    CAS  PubMed  Google Scholar 

  19. Proctor MJ, Morrison DS, Talwar D, et al. An inflammation-based prognostic score (mGPS) predicts cancer survival independent of tumour site: a Glasgow Inflammation Outcome Study. Br J Cancer. 2011;104(4):726–34. https://doi.org/10.1038/sj.bjc.6606087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Akita H, Takahashi H, Eguchi H, et al. Difference between carbohydrate antigen 19–9 and fluorine-18 fluorodeoxyglucose positron emission tomography in evaluating the treatment efficacy of neoadjuvant treatment in patients with resectable and borderline resectable pancreatic ductal adenocarcinoma: results of a dual-center study. Ann Gastroenterol Surg. 2021;5(3):381–9. https://doi.org/10.1002/ags3.12418.

    Article  PubMed  Google Scholar 

  21. Yamada D, Eguchi H, Iwagami Y, et al. The investigation of the survival time after recurrence in patients with pancreatic ductal adenocarcinoma for individualization of adjuvant chemotherapy. Surg Today. 2018. https://doi.org/10.1007/s00595-018-1674-3.

    Article  PubMed  Google Scholar 

  22. Miyake M, Morizawa Y, Hori S, et al. Clinical impact of postoperative loss in psoas major muscle and nutrition index after radical cystectomy for patients with urothelial carcinoma of the bladder. BMC Cancer. 2017;17(1):237. https://doi.org/10.1186/s12885-017-3231-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim KH, Hwang HK, Kang IC, Lee WJ, Kang CM. Oncologic impact of preoperative prognostic nutritional index change in resected pancreatic cancer following neoadjuvant chemotherapy. Pancreatology. 2020;20(2):247–53. https://doi.org/10.1016/j.pan.2019.12.006.

    Article  PubMed  Google Scholar 

  24. Patil D, Le TL, Bens KB, et al. Dynamic evaluation of the modified glasgow prognostic scale in patients with resected, localized clear cell renal cell carcinoma. Urology. 2020;141:101–7. https://doi.org/10.1016/j.urology.2020.03.024.

    Article  PubMed  Google Scholar 

  25. Martin L, Birdsell L, Macdonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47. https://doi.org/10.1200/JCO.2012.45.2722.

    Article  PubMed  Google Scholar 

  26. Portal D, Hofstetter L, Eshed I, et al. L3 skeletal muscle index (L3SMI) is a surrogate marker of sarcopenia and frailty in non-small cell lung cancer patients. Cancer Manag Res. 2019;11:2579–88. https://doi.org/10.2147/CMAR.S195869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Man Z, Pang Q, Zhou L, et al. Prognostic significance of preoperative prognostic nutritional index in hepatocellular carcinoma: a meta-analysis. HPB. 2018;20(10):888–95. https://doi.org/10.1016/j.hpb.2018.03.019.

    Article  PubMed  Google Scholar 

  28. Imaoka H, Mizuno N, Hara K, et al. Evaluation of Modified Glasgow prognostic score for pancreatic cancer: a retrospective cohort study. Pancreas. 2016;45(2):211–7. https://doi.org/10.1097/mpa.0000000000000446.

    Article  PubMed  Google Scholar 

  29. Oba T, Maeno K, Takekoshi D, et al. Neoadjuvant chemotherapy-induced decrease of prognostic nutrition index predicts poor prognosis in patients with breast cancer. BMC Cancer. 2020;20(1):160. https://doi.org/10.1186/s12885-020-6647-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manole E, Ceafalan LC, Popescu BO, Dumitru C, Bastian AE. Myokines as possible therapeutic targets in cancer cachexia. J Immunol Res. 2018;2018:8260742. https://doi.org/10.1155/2018/8260742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim JS, Galvão DA, Newton RU, Gray E, Taaffe DR. Exercise-induced myokines and their effect on prostate cancer. Nature reviews Urology. 2021;18(9):519–42. https://doi.org/10.1038/s41585-021-00476-y.

    Article  CAS  PubMed  Google Scholar 

  32. Okumura S, Kaido T, Hamaguchi Y, et al. Impact of preoperative quality as well as quantity of skeletal muscle on survival after resection of pancreatic cancer. Surgery. 2015;157(6):1088–98. https://doi.org/10.1016/j.surg.2015.02.002.

    Article  PubMed  Google Scholar 

  33. Ninomiya G, Fujii T, Yamada S, et al. Clinical impact of sarcopenia on prognosis in pancreatic ductal adenocarcinoma: a retrospective cohort study. Int J Surg. 2017;39:45–51. https://doi.org/10.1016/j.ijsu.2017.01.075.

    Article  PubMed  Google Scholar 

  34. Choi MH, Yoon SB, Lee K, et al. Preoperative sarcopenia and post-operative accelerated muscle loss negatively impact survival after resection of pancreatic cancer. J Cachexia Sarcopenia Muscle. 2018;9(2):326–34. https://doi.org/10.1002/jcsm.12274.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Peng YC, Wu CH, Tien YW, Lu TP, Wang YH, Chen BB. Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. Eur Radiol. 2021;31(4):2472–81. https://doi.org/10.1007/s00330-020-07294-7.

    Article  PubMed  Google Scholar 

  36. Cooper AB, Slack R, Fogelman D, et al. Characterization of anthropometric changes that occur during neoadjuvant therapy for potentially resectable pancreatic cancer. Ann Surg Oncol. 2015;22(7):2416–23. https://doi.org/10.1245/s10434-014-4285-2.

    Article  PubMed  Google Scholar 

  37. Sandini M, Patino M, Ferrone CR, et al. Association between changes in body composition and neoadjuvant treatment for pancreatic cancer. JAMA Surg. 2018;153(9):809–15. https://doi.org/10.1001/jamasurg.2018.0979.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Griffin OM, Duggan SN, Ryan R, McDermott R, Geoghegan J, Conlon KC. Characterising the impact of body composition change during neoadjuvant chemotherapy for pancreatic cancer. Pancreatology. 2019;19(6):850–7. https://doi.org/10.1016/j.pan.2019.07.039.

    Article  PubMed  Google Scholar 

  39. Naumann P, Eberlein J, Farnia B, et al. Cachectic body composition and inflammatory markers portend a poor prognosis in patients with locally advanced pancreatic cancer treated with chemoradiation. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11111655.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Kobayashi MD, PhD.

Ethics declarations

Shohei Takaichi, Yoshito Tomimaru, Shogo Kobayashi, Keisuke Toya, Kazuki Sasaki, Yoshifumi Iwagami, Daisaku Yamada, Takehiro Noda, Hidenori Takahashi, Tadafumi Asaoka, Masahiro Tanemura, Yuichiro Doki, and Hidetoshi Eguchi have no conflicts of interest or financial ties to disclosure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 120 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaichi, S., Tomimaru, Y., Kobayashi, S. et al. Change Impact of Body Composition During Neoadjuvant Chemoradiotherapy in Patients with Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma Undergoing Pancreatectomy. Ann Surg Oncol 30, 2458–2468 (2023). https://doi.org/10.1245/s10434-022-12985-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12985-0

Navigation