Skip to main content

Advertisement

Log in

Downregulation of ROBO4 in Pancreatic Cancer Serves as a Biomarker of Poor Prognosis and Indicates Increased Cell Motility and Proliferation Through Activation of MMP-9

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The axon guidance gene family, SLIT/ROBO pathway, controls neural network formation, which correlates with the development of several cancers.

Methods

We found through analysis of the public database that ROBO4, one of the axon guidance molecules among the SLIT/ROBO family, is significantly downregulated in primary pancreatic cancer tissues compared with adjacent normal tissues. We carried out transfection experiments using three pancreatic cancer cell lines (MiaPaCa-2, BxPC-3, and SW1990) and one pancreatic duct epithelial cell line (HPDE6c7). A total of 51 clinical samples were then examined by immunohistochemical staining to find an association between ROBO4 expression at the protein level, clinical characteristics, and surgical outcomes.

Results

ROBO4 overexpression suppressed the invasion and migration abilities in MiaPaCa-2 and BxPC-3, while ROBO4 siRNA transfection to SW1990 and HPDE6c7 enhanced those activities. PCR-based profiling detected MMP-9 as a candidate downstream target of ROBO4, which was validated by decreased MMP-9 activity after the ROBO4 overexpression assay. High ROBO4 expression clinical samples had significantly better overall survival rather than low ROBO4 cases (P = 0.048).

Conclusion

These findings suggest that decreased ROBO4 expression activates malignant phenotypes in cancer cells and is correlated with poor survival outcomes in pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  2. Yamada S, Fuchs BC, Fujii T, et al. Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery. 2013;154(5):946–54.

    Article  PubMed  Google Scholar 

  3. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. 2016;388(10039):73–85.

    Article  CAS  PubMed  Google Scholar 

  4. Nagakawa T, Kayahara M, Ueno K, et al. A clinicopathologic study on neural invasion in cancer of the pancreatic head. Cancer. 1992;69(4):930–5.

    Article  CAS  PubMed  Google Scholar 

  5. Nakao A, Harada A, Nonami T, Kaneko T, Takagi H. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer. Pancreas. 1996;12(4):357–61.

    Article  CAS  PubMed  Google Scholar 

  6. Mehlen P, Delloye-Bourgeois C, Chédotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer. 2011;11(3):188–97.

    Article  CAS  PubMed  Google Scholar 

  7. Kidd T, Brose K, Mitchell KJ, et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell. 1998;92(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  8. Dickinson RE, Dallol A, Bieche I, et al. Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer. 2004;91(12):2071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fujiwara M, Ghazizadeh M, Kawanami O. Potential role of the Slit/Robo signal pathway in angiogenesis. Vasc Med. 2006;11(2):115–21.

    Article  PubMed  Google Scholar 

  10. Domyan ET, Branchfield K, Gibson DA, et al. Roundabout receptors are critical for foregut separation from the body wall. Dev Cell. 2013;24(1):52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Legg JA, Herbert JM, Clissold P, Bicknell R. Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis. 2008;11(1):13–21.

    Article  PubMed  Google Scholar 

  12. Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinho AV, Van Bulck M, Chantrill L, et al. ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling. Nat Commun. 2018;9(1):5083.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Han S, Cao C, Tang T, et al. ROBO3 promotes growth and metastasis of pancreatic carcinoma. Cancer Lett. 2015;366(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  15. Huminiecki L, Bicknell R. In silico cloning of novel endothelial-specific genes. Genome Res. 2000;10(11):1796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R. Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics. 2002;79(4):547–52.

    Article  CAS  PubMed  Google Scholar 

  17. Pircher A, Jöhrer K, Kocher F, et al. Biomarkers of evasive resistance predict disease progression in cancer patients treated with antiangiogenic therapies. Oncotarget. 2016;7(15):20109–23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jones CA, London NR, Chen H, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med. 2008;14(4):448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stella MC, Trusolino L, Comoglio PM. The Slit/Robo system suppresses hepatocyte growth factor-dependent invasion and morphogenesis. Mol Biol Cell. 2009;20(2):642–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis. PLoS One. 2015;10(12):e0141925.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang F, Prahst C, Mathivet T, et al. The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. Nat Commun. 2016;7:13517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haage A, Schneider IC. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. Faseb J. 2014;28(8):3589–99.

    Article  CAS  PubMed  Google Scholar 

  23. Cai H, Liu W, Xue Y, et al. Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol. 2015;74(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  24. Xian J, Clark KJ, Fordham R, Pannell R, Rabbitts TH, Rabbitts PH. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene. Proc Natl Acad Sci USA. 2001;98(26):15062–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Göhrig A, Detjen KM, Hilfenhaus G, et al. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Cancer Res. 2014;74(5):1529–40.

    Article  PubMed  Google Scholar 

  26. Marlow R, Binnewies M, Sorensen LK, et al. Vascular Robo4 restricts proangiogenic VEGF signaling in breast. Proc Natl Acad Sci USA. 2010;107(23):10520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhuang X, Ahmed F, Zhang Y, et al. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis. 2015;18(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  28. Ito H, Duxbury M, Benoit E, et al. Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res. 2004;64(20):7439–46.

    Article  CAS  PubMed  Google Scholar 

  29. Shay G, Lynch CC, Fingleton B. Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44–46:200–6.

    Article  PubMed  Google Scholar 

  30. Roy R, Louis G, Loughlin KR, et al. Tumor-specific urinary matrix metalloproteinase fingerprinting: identification of high molecular weight urinary matrix metalloproteinase species. Clin Cancer Res. 2008;14(20):6610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ellenrieder V, Alber B, Lacher U, et al. Role of MT-MMPs and MMP-2 in pancreatic cancer progression. Int J Cancer. 2000;85(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  32. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bramhall SR, Schulz J, Nemunaitis J, Brown PD, Baillet M, Buckels JA. A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. Br J Cancer. 2002;87(2):161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao H, Ahirwar DK, Oghumu S, et al. Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis. Mol Oncol. 2016;10(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  35. Suchting S, Heal P, Tahtis K, Stewart LM, Bicknell R. Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. Faseb J. 2005;19(1):121–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank James P. Mahaffey, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Young Scientists, JP19K18080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Hayashi MD, PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamanaka, M., Hayashi, M., Sonohara, F. et al. Downregulation of ROBO4 in Pancreatic Cancer Serves as a Biomarker of Poor Prognosis and Indicates Increased Cell Motility and Proliferation Through Activation of MMP-9. Ann Surg Oncol 29, 7180–7189 (2022). https://doi.org/10.1245/s10434-022-12039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-12039-5

Navigation