Skip to main content

Advertisement

Log in

A Novel Thermal-driven Self-assembly Method to Prepare Albumin Nanoparticles: Formation Kinetics, Degradation Behavior and Formation Mechanism

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanoparticles based on bovine serum albumin (BSA), which shares 76% homology with human serum albumin (HSA), have emerged as a promising candidate for the efficient delivery of anticancer drugs. Thermal-driven self-assembly is a novel organic solvent-free approach to produce albumin nanoparticles. In our previous study, some features of this nanoparticle such as drug loading efficiency, drug encapsulation efficiency and drug release kinetics have been evaluated. However, the formation mechanism that determines the above nanoparticle properties remains unclear. Here, we investigated the formation kinetics and mechanism using spectroscopic methods including fluorescence spectroscopy, circular dichroism (CD) and differential scanning calorimetry (DSC). We also applied chemical analysis methods that measured the content changes of albumin active groups and vanillin. To verify the covalent networks in the nanoparticles, trypsin and glutathione (GSH) were used separately to cleave the peptide bonds and disulfide bridges, and dynamic light scattering (DLS) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were used to analyze the degraded samples. BSA nanoparticles started to form at 10 min and were completely formed at 120 min. With the digestion of trypsin, more than 50% of the nanoparticles were degraded within 60 min. CD spectra showed that α-helical structure of BSA decreased from 42.3% to 39.8% and 37.7% after heating for 10 and 60 min, respectively. In the DSC thermogram, the melting peak of BSA nanoparticles was 229.14℃, which is about 12℃ higher than the physical mixture of BSA and vanillin, indicating that chemical reactions occurred during the nanoparticle formation and formed a new more stable substance. Moreover, the results of active group assay, GSH degradation and SDS-PAGE experiments also proved that disulfide bonds and peptide bonds were formed between BSA molecules, whereas Schiff bases were formed between BSA and vanillin molecules. Formation kinetics and degradation behavior are important properties to characterize albumin nanoparticles and should be paid attention to. Not only that, this study also provides an effective way to study the formation mechanism of protein-based nanodrug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  2. Khatun A, Hasan M, Abd El-Emam MM, Fukuta T, Mimura M, Tashima R, et al. Effective Anticancer Therapy by Combination of Nanoparticles Encapsulating Chemotherapeutic Agents and Weak Electric Current. Biol Pharm Bull. 2022;45:194–9.

    Article  CAS  PubMed  Google Scholar 

  3. Ding D, Tang X, Cao X, Wu J, Yuan A, Qiao Q, et al. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech. 2014;15:213–22.

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Zheng C, Xin J, Chen F, Ling H, Sun L, et al. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base. Int J Nanomedicine. 2016;11:3875–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang C, Li L, Fraser CD, Ko A, Corzo D, Enger C, et al. The treatment patterns, efficacy, and safety of nab ((R))-paclitaxel for the treatment of metastatic breast cancer in the United States: results from health insurance claims analysis. BMC Cancer. 2015;15:1019.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arpino G, Marme F, Cortes J, Ricevuto E, Leonard R, Llombart-Cussac A. Tailoring the dosing schedule of nab-paclitaxel in metastatic breast cancer according to patient and disease characteristics: Recommendations from a panel of experts. Crit Rev Oncol Hematol. 2016;99:81–90.

    Article  CAS  PubMed  Google Scholar 

  7. Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother. 2019;20:95–102.

    Article  CAS  PubMed  Google Scholar 

  8. Kawano Y, Sasaki T, Yamaguchi H, Hirano K, Horiike A, Satouchi M, et al. Phase I/II study of carboplatin plus nab-paclitaxel and concurrent radiotherapy for patients with locally advanced non-small cell lung cancer. Lung Cancer. 2018;125:136–41.

    Article  PubMed  Google Scholar 

  9. Pointet AL, Tougeron D, Pernot S, Pozet A, Bechade D, Trouilloud I, et al. Three fluoropyrimidine-based regimens in routine clinical practice after nab-paclitaxel plus gemcitabine for metastatic pancreatic cancer: An AGEO multicenter study. Clin Res Hepatol Gastroenterol. 2020;44:295–301.

    Article  CAS  PubMed  Google Scholar 

  10. Aziz A, Sefidbakht Y, Rezaei S, Kouchakzadeh H, Uskokovic V. Doxorubicin-loaded, pH-sensitive albumin nanoparticles for lung cancer cell targeting. J Pharm Sci. 2022;111:1187–96.

    Article  CAS  PubMed  Google Scholar 

  11. Lee WT, Lee J, Kim H, Nguyen NT, Lee ES, Oh KT, et al. Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mater Today Bio. 2021;12: 100164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Putri AD, Chen PS, Su YL, Lin JP, Liou JP, Hsieh CM. Optimization and development of selective histone deacetylase inhibitor (MPT0B291)-loaded albumin nanoparticles for anticancer therapy. Pharmaceutics. 2021;13:1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Xu Y, Liu Q, Tang Y, Ge L, Zheng C, et al. A nontoxic disulfide bond reducing method for lipophilic drug-loaded albumin nanoparticle preparation: formation dynamics, influencing factors and formation mechanisms investigation. Int J Pharm. 2013;443:80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Xu Q, Pei W, Cai L, Yu X, Jiang H, et al. Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. Int J Biol Macromol. 2021;193:2103–12.

    Article  CAS  PubMed  Google Scholar 

  15. Storp B, Engel A, Boeker A, Ploeger M, Langer K. Albumin nanoparticles with predictable size by desolvation procedure. J Microencapsul. 2012;29:138–46.

    Article  PubMed  Google Scholar 

  16. Zu Y, Meng L, Zhao X, Ge Y, Yu X, Zhang Y, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int J Nanomedicine. 2013;8:1207–22.

    PubMed  PubMed Central  Google Scholar 

  17. Wilson B, Lavanya Y, Priyadarshini SR, Ramasamy M, Jenita JL. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm. 2014;473:73–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S, et al. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm. 2011;403:285–91.

    Article  CAS  PubMed  Google Scholar 

  19. Ibrahim N, Ibrahim H, Dormoi J, Briolant S, Pradines B, Moreno A, et al. Albumin-bound nanoparticles of practically water-insoluble antimalarial lead greatly enhance its efficacy. Int J Pharm. 2014;464:214–24.

    Article  CAS  PubMed  Google Scholar 

  20. Deng W, Li J, Yao P, He F, Huang C. Green preparation process, characterization and antitumor effects of doxorubicin-BSA-dextran nanoparticles. Macromol Biosci. 2010;10:1224–34.

    Article  CAS  PubMed  Google Scholar 

  21. Chen CQ, Lin W, Coombes AG, Davis SS, Illum L. Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method. J Microencapsul. 1994;11:395–407.

    Article  CAS  PubMed  Google Scholar 

  22. Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm. 2000;194:91–102.

    Article  CAS  PubMed  Google Scholar 

  23. Steinhauser IM, Langer K, Strebhardt KM, Spankuch B. Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials. 2008;29:4022–8.

    Article  CAS  PubMed  Google Scholar 

  24. Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/chitosan core–doxorubicin loading and delivery. Int J Pharm. 2010;393:176–84.

    Article  CAS  PubMed  Google Scholar 

  25. Paik SY, Nguyen HH, Ryu J, Che JH, Kang TS, Lee JK, et al. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem. 2013;141:695–701.

    Article  CAS  PubMed  Google Scholar 

  26. Langer K, Anhorn MG, Steinhauser I, Dreis S, Celebi D, Schrickel N, et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm. 2008;347:109–17.

    Article  CAS  PubMed  Google Scholar 

  27. Winther JR, Thorpe C. Quantification of thiols and disulfides. Biochim Biophys Acta. 2014;1840:838–46.

    Article  CAS  PubMed  Google Scholar 

  28. Dai Z, Wu Z, Jia S, Wu G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;964:116–27.

    Article  CAS  PubMed  Google Scholar 

  29. Chobpattana W, Jeon IJ, Smith JS. Kinetics of interaction of vanillin with amino acids and peptides in model systems. J Agric Food Chem. 2000;48:3885–9.

    Article  CAS  PubMed  Google Scholar 

  30. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22:343–52.

    Article  CAS  PubMed  Google Scholar 

  31. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30:1191–212.

    Article  CAS  PubMed  Google Scholar 

  32. Park KM, Lee DW, Sarkar B, Jung H, Kim J, Ko YH, et al. Reduction-sensitive, robust vesicles with a non-covalently modifiable surface as a multifunctional drug-delivery platform. Small. 2010;6:1430–41.

    Article  CAS  PubMed  Google Scholar 

  33. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30:2180–98.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Xie X, Ren C, Yang Y, Xu X, Chen X. Application of molecular modelling and spectroscopic approaches for investigating binding of vanillin to human serum albumin. Food Chem. 2011;127:705–10.

    Article  CAS  PubMed  Google Scholar 

  35. Takeda K, Wada A, Yamamoto K, Moriyama Y, Aoki K. Conformational change of bovine serum albumin by heat treatment. J Protein Chem. 1989;8:653–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mikheeva LM, Grinberg NV, Grinberg V, Tolstoguzov VB. Effect of thermal denaturation on vanillin binding to some food proteins. Nahrung. 1998;42:185–6.

    Article  CAS  PubMed  Google Scholar 

  37. Murayama K, Tomida M. Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry. 2004;43:11526–32.

    Article  CAS  PubMed  Google Scholar 

  38. Rombouts I, Lagrain B, Delcour JA. Heat-induced cross-linking and degradation of wheat gluten, serum albumin, and mixtures thereof. J Agric Food Chem. 2012;60:10133–40.

    Article  CAS  PubMed  Google Scholar 

  39. Saeed BMS, Al-Jadaan SAN, Abbas BA. Study on Anticancer Activity of 4, 4’-[1,4-phenylenebis(1,3,4-thiadiazole-5,2-diyl)] bis (azaneylylidene) bis (methaneylylidene) diphenolon Breast Cancer Cells. Arch Razi Inst. 2021;76:821–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Swathi K, Meghana B, Sowjanya K, Lakshmi Manasa G, Munemma R. Designing and Screening of New Schiff Bases of Isatins for Antibacterial Activity by In Silico Methods and Docking Studies. Adv Exp Med Biol. 2021;1339:249–55.

    Article  CAS  PubMed  Google Scholar 

  41. Swiatek P, Glomb T, Dobosz A, Gebarowski T, Wojtkowiak K, Jezierska A, et al. Biological evaluation and molecular docking studies of novel 1,3,4-oxadiazole derivatives of 4,6-dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci. 2022;23:549.

  42. Mohamed GG, Omar MM, Ahmed YM. Metal complexes of Tridentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies with COVID-19 protein receptor. Z Anorg Allg Chem. 2021;647:2201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bashiri G, Shojaosadati SA, Abdollahi M. Synthesis and characterization of Schiff base containing bovine serum albumin-gum arabic aldehyde hybrid nanogels via inverse miniemulsion for delivery of anticancer drug. Int J Biol Macromol. 2021;170:222–31.

    Article  CAS  PubMed  Google Scholar 

  44. Prajapati R, Garcia-Garrido E, Somoza A. Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers (Basel). 2021;13:3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromol. 2008;9:2383–9.

    Article  CAS  Google Scholar 

  46. Wu L, Chen M, Mao H, Wang N, Zhang B, Zhao X, et al. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int J Mol Med. 2017;39:851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (No.BK20180273), the “Qing-Lan” Project of Jiangsu Colleges, the Natural Science Research Projects of Universities in Jiangsu Province (No.18KJB360015), the National Subject Cultivation Project of Jiangsu Vocational College of Medicine (No.20204306) and the Research Startup Fund of Jiangsu Vocational College of Medicine (No.20216104).

Author information

Authors and Affiliations

Authors

Contributions

Fang Li: Conceptualization, Methodology, Investigation, Writing- Original draft preparation. Stacy Yeh: Formal analysis, Writing - Review & Editing. Qin Shi: Resources, Visualization. Peng Wang: Data Curation. Hongyan Wu: Investigation. Junbo Xin: Conceptualization, Methodology.

Corresponding authors

Correspondence to Fang Li or Junbo Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 336 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yeh, S., Shi, Q. et al. A Novel Thermal-driven Self-assembly Method to Prepare Albumin Nanoparticles: Formation Kinetics, Degradation Behavior and Formation Mechanism. AAPS PharmSciTech 23, 250 (2022). https://doi.org/10.1208/s12249-022-02407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02407-5

Keywords

Navigation