Skip to main content
Log in

Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect

  • Research Article
  • Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 μg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. https://doi.org/10.1038/nrendo.2017.151.

    Article  Google Scholar 

  2. Bailey CJ, Day C. Treatment of type 2 diabetes: future approaches. Br Med Bull. 2018;126(1):123–37. https://doi.org/10.1093/brimed/ldy013.

    Article  CAS  Google Scholar 

  3. Metry M, Shu Y, Abrahamsson B, Cristofoletti R, Dressman JB, Groot DW, et al. Biowaiver monographs for immediate release solid oral dosage forms: metformin hydrochloride. J Pharm Sci. 2021;110(4):1513–26. https://doi.org/10.1016/j.xphs.2021.01.011.

    Article  CAS  Google Scholar 

  4. Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim KH. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol. 2017;69(2):143–50. https://doi.org/10.1111/jphp.12672.

    Article  CAS  Google Scholar 

  5. Garza-Ocañas L, González-Canudas J, de la Tamez OE, Badillo-Castañeda C, Gómez-Meza MV, Romero-Antonio Y, et al. Comparative bioavailability of metformin hydrochloride oral solution versus metformin hydrochloride tablets in fasting Mexican healthy volunteers. Adv Ther. 2019;36(2):407–15. https://doi.org/10.1007/s12325-018-0853-3.

    Article  CAS  Google Scholar 

  6. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–35. https://doi.org/10.1007/s00125-015-3844-9.

    Article  CAS  Google Scholar 

  7. de Vries ST, Denig P, Ekhart C, Mol PGM, van Puijenbroek EP. Sex differences in adverse drug reactions of metformin: a longitudinal survey study. Drug Saf. 2020;43(5):489–95. https://doi.org/10.1007/s40264-020-00913-8.

    Article  CAS  Google Scholar 

  8. Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci. 2019;138:105019. https://doi.org/10.1016/j.ejps.2019.105019.

    Article  CAS  Google Scholar 

  9. McGirr ME, McAllister SM, Peters EE, Vickers AW, Parr AF, Basit AW. The use of the InteliSite companion device to deliver mucoadhesive polymers to the dog colon. Eur J Pharm Sci. 2009;36(4-5):386–91. https://doi.org/10.1016/j.ejps.2008.11.007.

    Article  CAS  Google Scholar 

  10. Preisig D, Roth R, Tognola S, Varum FJ, Bravo R, Cetinkaya Y, et al. Mucoadhesive microparticles for local treatment of gastrointestinal diseases. Eur J Pharm Biopharm. 2016;105:156–65. https://doi.org/10.1016/j.ejpb.2016.06.009.

    Article  CAS  Google Scholar 

  11. Sip S, Paczkowska-Walendowska M, Rosiak N, Miklaszewski A, Grabańska-Martyńska K, Samarzewska K, et al. Chitosan as valuable excipient for oral and topical carvedilol delivery systems. Pharmaceuticals (Basel). 2021;14(8):712. https://doi.org/10.3390/ph14080712.

    Article  CAS  Google Scholar 

  12. SreeHarsha N, Ramnarayanan C, Al-Dhubiab BE, Nair AB, Hiremath JG, Venugopala KN, et al. Mucoadhesive particles: a novel, prolonged-release nanocarrier of sitagliptin for the treatment of diabetics. Biomed Res Int. 2019;2019:3950942. https://doi.org/10.1155/2019/3950942.

    Article  CAS  Google Scholar 

  13. Dou T, Wang J, Han C, Shao X, Zhang J, Lu W. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers. Int J Biol Macromol. 2019;138:791–9. https://doi.org/10.1016/j.ijbiomac.2019.07.168.

    Article  CAS  Google Scholar 

  14. Islam MS, Reineke J, Kaushik R, Woyengo T, Baride A, Alqahtani MS, et al. Bioadhesive food protein nanoparticles as pediatric oral drug delivery system. ACS Appl Mater Interfaces. 2019;11(20):18062–73. https://doi.org/10.1021/acsami.9b00152.

    Article  CAS  Google Scholar 

  15. Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144–58. https://doi.org/10.1016/j.ijpharm.2016.05.016.

    Article  CAS  Google Scholar 

  16. Zhao P, Xia X, Xu X, Leung KKC, Rai A, Deng Y, et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat Commun. 2021;12(1):7162. https://doi.org/10.1038/s41467-021-27463-6.

    Article  CAS  Google Scholar 

  17. Jelvehgari M, Zakeri-Milani P, Khonsari F. Comparative study of in vitro release and mucoadhesivity of gastric compacts composed of multiple unit system/bilayered discs using direct compression of metformin hydrochloride. Bioimpacts. 2014;4(1):29–38. https://doi.org/10.5681/bi.2014.002.

    Article  CAS  Google Scholar 

  18. Cetin M, Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 2016;23(8):2796–805. https://doi.org/10.3109/10717544.2015.1089957.

    Article  CAS  Google Scholar 

  19. Schmidt C, Lautenschlaeger C, Collnot EM, Schumann M, Bojarski C, Schulzke JD, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa: a first in vivo study in human patients. J Control Release. 2013;165(2):139–45. https://doi.org/10.1016/j.jconrel.2012.10.019.

    Article  CAS  Google Scholar 

  20. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–74. https://doi.org/10.3390/md13031133.

    Article  CAS  Google Scholar 

  21. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K. Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358–68. https://doi.org/10.1016/j.ijbiomac.2017.07.087.

    Article  CAS  Google Scholar 

  22. Kurakula M, N NR. Prospection of recent chitosan biomedical trends: evidence from patent analysis (2009-2020). Int J Biol Macromol. 2020;165(Pt B):1924–38. https://doi.org/10.1016/j.ijbiomac.2020.10.043.

    Article  CAS  Google Scholar 

  23. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I. Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol. 2018;110:97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140.

    Article  CAS  Google Scholar 

  24. Darbasizadeh B, Motasadizadeh H, Foroughi-Nia B, Farhadnejad H. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride. J Pharm Biomed Anal. 2018;153:63–75. https://doi.org/10.1016/j.jpba.2018.02.023.

    Article  CAS  Google Scholar 

  25. Hejjaji EMA, Smith AM, Morris GA. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol. 2018;120(Pt B):1610–7. https://doi.org/10.1016/j.ijbiomac.2018.09.185.

    Article  CAS  Google Scholar 

  26. Pant A, Negi JS. Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex. Eur J Pharm Sci. 2018;112:180–5. https://doi.org/10.1016/j.ejps.2017.11.020.

    Article  CAS  Google Scholar 

  27. Łabuzek K, Suchy D, Gabryel B, Bielecka A, Liber S, Okopień B. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide. Pharmacol Rep. 2010;62(5):956–65. https://doi.org/10.1016/s1734-1140(10)70357-1.

    Article  Google Scholar 

  28. Li M, Shen Q, Lu W, Chen J, Yu L, Liu S, et al. Development and evaluation of controlled release of metformin hydrochloride for improving the oral bioavailability based on a novel enteric osmotic pump capsule. J Drug Deliv Sci Technol. 2020;60:102054. https://doi.org/10.1016/j.jddst.2020.102054.

    Article  CAS  Google Scholar 

  29. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc. 2021;1(4):e78. https://doi.org/10.1002/cpz1.78.

    Article  CAS  Google Scholar 

  30. Al-Awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, et al. Experimental diabetes mellitus in different animal models. J Diabetes Res. 2016;2016:9051426. https://doi.org/10.1155/2016/9051426.

    Article  CAS  Google Scholar 

  31. Hu LL, Zhang KQ, Tian T, Zhang H, Fu Q. Probucol improves erectile function via activation of Nrf2 and coordinates the HO-1 / DDAH / PPAR-γ/ eNOS pathways in streptozotocin-induced diabetic rats [published correction appears in Biochem Biophys Res Commun. 2021 Oct 20;575:101-102]. Biochem Biophys Res Commun. 2018;507(1-4):9-14. https://doi.org/10.1016/j.bbrc.2018.10.036

  32. Liang W, Zhang D, Kang J, Meng X, Yang J, Yang L, et al. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomed Pharmacother. 2018;107:721–8. https://doi.org/10.1016/j.biopha.2018.08.046.

    Article  CAS  Google Scholar 

  33. Liu X, Shao R, Yang X, Xiao G, He S, Feng Y, et al. Untargeted safety pharmacology screen of blood-activating and stasis-removing patent Chinese herbal medicines identified nonherbal ingredients as a cause of organ damage in experimental models. Front Pharmacol. 2019;10:993. https://doi.org/10.3389/fphar.2019.00993.

    Article  CAS  Google Scholar 

  34. Ma S, Ma J, Guo L, Bai J, Mao S, Zhang M. Tongguan capsule-derived herb reduces susceptibility to atrial fibrillation by inhibiting left atrial fibrosis via modulating cardiac fibroblasts. J Cell Mol Med. 2019;23(2):1197–210. https://doi.org/10.1111/jcmm.14022.

    Article  CAS  Google Scholar 

  35. Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kaushik A, Kim KH, et al. Antidiabetic activity enhancement in streptozotocin + nicotinamide-induced diabetic rats through combinational polymeric nanoformulation. Int J Nanomedicine. 2019;14:4383–95. https://doi.org/10.2147/IJN.S205319.

    Article  CAS  Google Scholar 

  36. Chinnaiyan SK, Deivasigamani K, Gadela VR. Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. Int J Biol Macromol. 2019;125:278–89. https://doi.org/10.1016/j.ijbiomac.2018.12.009.

    Article  CAS  Google Scholar 

  37. Li J, Tan G, Cheng B, Liu D, Pan W. Transport mechanism of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan decorated coumarin-6 loaded nanostructured lipid carriers across the rabbit ocular. Eur J Pharm Biopharm. 2017;120:89–97. https://doi.org/10.1016/j.ejpb.2017.08.013.

    Article  CAS  Google Scholar 

  38. Zhang G, Wang Y, Zhang Z, He Z, Liu Y, Fu Q. FRET imaging revealed that nanocrystals enhanced drug oral absorption by dissolution rather than endocytosis: a case study of coumarin 6. J Control Release. 2021;332:225–32. https://doi.org/10.1016/j.jconrel.2021.02.025.

    Article  CAS  Google Scholar 

  39. Cho JH, Choi HG. Acetaminophen and tramadol hydrochloride-loaded soft gelatin capsule: preparation, dissolution and pharmacokinetics in beagle dogs. Pharm Dev Technol. 2021;26(5):576–81. https://doi.org/10.1080/10837450.2021.1903036.

    Article  CAS  Google Scholar 

  40. Shirae S, Mori Y, Kozaki T, Ose A, Hasegawa S. A pharmacokinetic bioequivalence study comparing different-strength and -size capsules of isavuconazonium sulfate in healthy Japanese subjects. Clin Pharmacol Drug Dev 2022;https://doi.org/10.1002/cpdd.1101.10.1002/cpdd.1101

  41. Song XN, Lu YT, Yang DY, Wang S, Hang TJ, Song M. Pharmacokinetics of mercury after oral administration of cinnabaris and Fufang Niuhuang Xiaoyan capsule in rats. Zhongguo Zhong Yao Za Zhi. 2017;42(14):2779–83. https://doi.org/10.19540/j.cnki.cjcmm.20170524.001.

    Article  Google Scholar 

  42. Sun L, Nie X, Lu W, Zhang Q, Fang W, Gao S, et al. Mucus-penetrating alginate-chitosan nanoparticles loaded with berberine hydrochloride for oral delivery to the inflammation site of ulcerative colitis. AAPS PharmSciTech. 2022;23(179):1–15. https://doi.org/10.1208/s12249-022-02327-4.

    Article  CAS  Google Scholar 

  43. Matalqah SM, Aiedeh K, Mhaidat NM, Alzoubi KH, Bustanji Y, Hamad I. Chitosan nanoparticles as a novel drug delivery system: a review article. Curr Drug Targets. 2020;21(15):1613–24. https://doi.org/10.2174/1389450121666200711172536.

    Article  CAS  Google Scholar 

  44. Cheung RC, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–86. https://doi.org/10.3390/md13085156.

    Article  CAS  Google Scholar 

  45. Agrahari V, Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine (London). 2017;12(8):819–23. https://doi.org/10.2217/nnm-2017-0039.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jiayi Chen from Ascendia Pharmaceuticals, Inc., for his support in writing of the thesis.

Funding

This project was funded by the National Natural Science Foundation of China (No. 81973488, No. 22003002); Key Project of Natural Science Foundation for the Higher Education Institutions of Anhui Province (GXXT-2020-025(10-4); KJ2019A0451; KJ2020A0382); Key Project of Key Laboratory of Xin’an Medicine (Anhui University of Chinese Medicine); and Ministry of Education (No. 2020xayx02).

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Wenjie Lu, Lingfei Yu, Lujun Wang, Rongfeng Hu

Conducted experiments: Wenjie Lu, Lingfei Yu, Lujun Wang, Manman Li, Zijun Wu

Contributed new reagents or analytic tools: Wenjie Lu, Shengqi Chen, Rongfeng Hu, Haiping Hao

Performed data analysis: Wenjie Lu, Lujun Wang, Shengqi Chen, Rongfeng Hu, Haiping Hao

Wrote or contributed to the writing of the manuscript: Wenjie Lu, Lujun Wang, Lingfei Yu, Manman Li, Zijun Wu, Shengqi Chen, Rongfeng Hu, Haiping Hao

Corresponding authors

Correspondence to Shengqi Chen, Rongfeng Hu or Haiping Hao.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Yu, L., Wang, L. et al. Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect. AAPS PharmSciTech 24, 31 (2023). https://doi.org/10.1208/s12249-022-02402-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02402-w

Keywords

Navigation