Skip to main content

Advertisement

Log in

Effect of Different Absorption Enhancers on the Nasal Absorption of Nalmefene Hydrochloride

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this work is to explore the effects of novel absorption enhancers on the nasal absorption of nalmefene hydrochloride (NMF). First, the influence of absorption enhancers with different concentrations and types and drug concentrations on the nasal absorption of NMF was investigated in vivo in rats. The absorption enhancers studied include n-dodecyl-β-d-maltoside (DDM), hydroxypropyl-β-cyclodextrin (HP-β-CD), and polyethylene glycol (15)-hydroxy Stearate (Solutol®HS15). At the same time, the in situ toad palate model and rat nasal mucosa model were used to assess the cilia toxicity. The results showed that all the absorption enhancers investigated significantly promote the nasal absorption of NMF, but with different degrees and trends. Among them, the 0.5% (w/v) DDM had the strongest enhancement effect, followed by 0.5% (w/v) Solutol®HS15, 0.25% (w/v) DDM, 0.25% (w/v) Solutol®HS15, 0.1% (w/v) Solutol®HS15, 0.1% (w/v) DDM, and 0.25% (w/v) HP-β-CD, with absolute bioavailability of 76.49%, 72.14%, 71.00%, 69.46%, 60.41%, 59.42%, and 55.18%, respectively. All absorption enhancers exhibited good safety profiles in nasal ciliary toxicity tests. From the perspective of enhancing effect and safety, we considered DDM to be a promising nasal absorption enhancer. And in addition to DDM, Solutol®HS15 can also promote intranasal absorption of NMF, which will provide another option for the development of nalmefene hydrochloride nasal spray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coussens NP, Sittampalam GS, Jonson SG, et al. The opioid crisis and the future of addiction and pain therapeutics. J Pharmacol Exp Ther. 2019;371(2):396–408. https://doi.org/10.1124/jpet.119.259408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. United States Government Accountability Office. Synthetic opioids: considerations for the class-wide scheduling of fentanyl-related substances. GAO@100. 2021. https://www.gao.gov/products/gao-21-499. Published: Apr 12, 2021.

  3. Public Health Agency of Canada. Apparent opioid and stimulant toxicity deaths. 2021. https://health-infobase.canada.ca/substance-related-harms/opioids-stimulants/. Published: December 2021.

  4. Skolnick P. On the front lines of the opioid epidemic: rescue by naloxone. Eur J Pharmacol. 2018;835:147–53. https://doi.org/10.1016/j.ejphar.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  5. Yeung DT, Bough KJ, Harper JR, Platoff GE Jr. National Institutes of Health (NIH) Executive meeting summary: developing medical countermeasures to rescue opioid-induced respiratory depression (a trans-agency scientific meeting)-August 6/7, 2019. J Med Toxicol. 2020;16(1):87–105. https://doi.org/10.1007/s13181-019-00750-x.

    Article  PubMed  Google Scholar 

  6. Krieter P, Gyaw S, Crystal R, Skolnick P. Fighting fire with fire: development of intranasal nalmefene to treat synthetic opioid overdose. J Pharmacol Exp Ther. 2019;371(2):409–15. https://doi.org/10.1124/jpet.118.256115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kharasch ED. Opioid half-lives and hemlines: the long and short of fashion. Anesthesiology. 2015;122(5):969–70. https://doi.org/10.1097/ALN.0000000000000634.

    Article  PubMed  Google Scholar 

  8. France CP, Ahern GP, Averick S, Disney A, Enright HA, Esmaeli-Azad B, et al. Countermeasures for preventing and treating opioid overdose. Clin Pharmacol Ther. 2021;109(3):578–90. https://doi.org/10.1002/cpt.2098.

    Article  PubMed  Google Scholar 

  9. Bouw MR, Chung SS, Gidal B, King A, Tomasovic J, Wheless JW, et al. Clinical pharmacokinetic and pharmacodynamic profile of midazolam nasal spray. Epilepsy Res. 2021;171:106567. https://doi.org/10.1016/j.eplepsyres.2021.106567.

    Article  CAS  PubMed  Google Scholar 

  10. Wermeling DP. A response to the opioid overdose epidemic: naloxone nasal spray. Drug Deliv Transl Res. 2013;3(1):63–74. https://doi.org/10.1007/s13346-012-0092-0.

    Article  CAS  PubMed  Google Scholar 

  11. Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B Biointerfaces. 2016;147:376–86. https://doi.org/10.1016/j.colsurfb.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  12. Chokshi A, Vaishya R, Inavolu R, Potta T. Intranasal spray formulation containing rizatriptan benzoate for the treatment of migraine. Int J Pharm. 2019;571:118702. https://doi.org/10.1016/j.ijpharm.2019.118702.

    Article  CAS  PubMed  Google Scholar 

  13. Coucke D, Pringels E, Foreman P, Adriaensens P, Carleer R, Remon JP, et al. Influence of heat treatment on spray-dried mixtures of Amioca starch and Carbopol 974P used as carriers for nasal drug delivery. Int J Pharm. 2009;378(1–2):45–50. https://doi.org/10.1016/j.ijpharm.2009.05.041.

    Article  CAS  PubMed  Google Scholar 

  14. Cloyd J, Haut S, Carrazana E, Rabinowicz AL. Overcoming the challenges of developing an intranasal diazepam rescue therapy for the treatment of seizure clusters. Epilepsia. 2021;62(4):846–56. https://doi.org/10.1111/epi.16847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuyama T, Morita T, Horikiri Y, Yamahara H, Yoshino H. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant. J Control Release. 2006;110(2):347–52. https://doi.org/10.1016/j.jconrel.2005.09.047.

    Article  CAS  PubMed  Google Scholar 

  16. Abdel Mouez M, Zaki NM, Mansour S, Geneidi AS. Bioavailability enhancement of verapamil HCl via intranasal chitosan microspheres. Eur J Pharm Sci. 2014;51:59–66. https://doi.org/10.1016/j.ejps.2013.08.029.

    Article  CAS  PubMed  Google Scholar 

  17. Shah B, Khunt D, Misra M, Padh H. Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: formulation, physicochemical and pharmacokinetic consideration. Eur J Pharm Sci. 2016;91:196–207. https://doi.org/10.1016/j.ejps.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  18. Na L, Mao S, Wang J, Sun W. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int J Pharm. 2010;397(1–2):59–66. https://doi.org/10.1016/j.ijpharm.2010.06.048.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Li J, Zhang X, Ding J, Mao S. Non-ionic surfactants as novel intranasal absorption enhancers: in vitro and in vivo characterization. Drug Deliv. 2016;23(7):2272–9. https://doi.org/10.3109/10717544.2014.971196.

    Article  CAS  PubMed  Google Scholar 

  20. Xia Y, Li L, Huang X, Wang Z, Zhang H, Gao J, et al. Performance and toxicity of different absorption enhancers used in the preparation of Poloxamer thermosensitive in situ gels for ketamine nasal administration. Drug Dev Ind Pharm. 2020;46(5):697–705. https://doi.org/10.1080/03639045.2020.1750625.

    Article  CAS  PubMed  Google Scholar 

  21. England RJ, Homer JJ, Knight LC, Ell SR. Nasal pH measurement: a reliable and repeatable parameter. Clin Otolaryngol Allied Sci. 1999;24(1):67–8. https://doi.org/10.1046/j.1365-2273.1999.00223.x.

    Article  CAS  PubMed  Google Scholar 

  22. Drewes AM, Jensen RD, Nielsen LM, Droney J, Christrup LL, Arendt-Nielsen L, et al. Differences between opioids: pharmacological, experimental, clinical and economical perspectives. Br J Clin Pharmacol. 2013;75(1):60–78. https://doi.org/10.1111/j.1365-2125.2012.04317.x.

    Article  CAS  PubMed  Google Scholar 

  23. Bshara H, Osman R, Mansour S, El-Shamy Ael-H. Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydr Polym. 2014;99:297–305. https://doi.org/10.1016/j.carbpol.2013.08.027.

  24. Martins PS, Ochoa R, Pimenta AM, Ferreira LA, Melo AL, da Silva JB, et al. Mode of action of beta-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. Int J Pharm. 2006;325(1–2):39–47. https://doi.org/10.1016/j.ijpharm.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  25. Rassu G, Soddu E, Cossu M, Brundu A, Cerri G, Marchetti N, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77. https://doi.org/10.1016/j.jconrel.2015.01.025.

    Article  CAS  PubMed  Google Scholar 

  26. Williams AJ, Jordan F, King G, Lewis AL, Illum L, Masud T, et al. In vitro and preclinical assessment of an intranasal spray formulation of parathyroid hormone PTH 1–34 for the treatment of osteoporosis. Int J Pharm. 2018;535(1–2):113–9. https://doi.org/10.1016/j.ijpharm.2017.10.029.

    Article  CAS  PubMed  Google Scholar 

  27. Pearson RG, Masud T, Blackshaw E, Naylor A, Hinchcliffe M, Jeffery K, et al. Nasal administration and plasma pharmacokinetics of parathyroid hormone peptide PTH 1–34 for the treatment of osteoporosis. Pharmaceutics. 2019;11(6):265. https://doi.org/10.3390/pharmaceutics11060265.

    Article  CAS  PubMed Central  Google Scholar 

  28. Illum L, Jordan F, Lewis AL. CriticalSorb™: a novel efficient nasal delivery system for human growth hormone based on Solutol®HS15. J Control Release. 2012;162(1):194–200. https://doi.org/10.1016/j.jconrel.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  29. Hogan RE, Tarquinio D, Sperling MR, Klein P, Miller I, Segal EB, et al. Pharmacokinetics and safety of VALTOCO (NRL-1; diazepam nasal spray) in patients with epilepsy during seizure (ictal/peri-ictal) and nonseizure (interictal) conditions: a phase 1, open-label study. Epilepsia. 2020;61(5):935–43. https://doi.org/10.1111/epi.16506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gradauer K, Iida M, Watari A, Kataoka M, Yamashita S, Kondoh M, et al. Dodecylmaltoside modulates bicellular tight junction contacts to promote enhanced permeability. Mol Pharm. 2017;14(12):4734–40. https://doi.org/10.1021/acs.molpharmaceut.7b00297.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82073793) and the National Key Technologies Research and Development Program for New Drugs of China (grant number 2018ZX09721003-007).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study conception and design. Material preparation and data collection and analysis were performed by Guangjun Nie, Aiping Zheng, Ting Zhang, Meng Li, and Xiaolu Han. The first draft of the manuscript was written by Ting Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aiping Zheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, M., Han, X. et al. Effect of Different Absorption Enhancers on the Nasal Absorption of Nalmefene Hydrochloride. AAPS PharmSciTech 23, 143 (2022). https://doi.org/10.1208/s12249-022-02252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02252-6

KEY WORDS

Navigation