Skip to main content
Log in

The Physical Stability of Felodipine and Its Recrystallization from an Amorphous Solid Dispersion Studied by NMR Relaxometry

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The 1H nuclear magnetic resonance (NMR) relaxometry method was applied to investigate the physical stability of an active pharmaceutical ingredient (API) and, for the first time, its recrystallization process in an amorphous solid dispersion system (ASD). The ASD of felodipine and polyvinylpyrrolidone (PVP) was prepared using the solvent evaporation method in a mass ratio of 50:50. In the first stage of the study (250 days), the sample was stored at 0% relative humidity (RH). The recovery of magnetization was described by one-exponential function. In the second stage (300 days in 75% relative humidity), the recrystallization process of felodipine was studied, showing in the sample three components of equilibrium magnetization related to (i) crystalline felodipine, (ii) water, and (iii) felodipine and PVP remaining in the ASD. The study shows that the 1H NMR relaxometry method is a very useful tool for analysing the composition of a three-phase system mixed at the molecular level and for the investigation of recrystallization process of API in amorphous solid dispersion system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;42:1–10.

    Article  CAS  Google Scholar 

  2. Renuka, Singh SK, Gulati M, Narang R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm Dev Technol. 2017;22:13–25.

    Article  CAS  PubMed  Google Scholar 

  3. Takagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan Mol Pharm. 2006;3:631-643.

  4. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  PubMed  Google Scholar 

  5. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–403.

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Theil F, Lehmkemper K, Gessner D, Li Y, Lishaut H. Crystallization risk assessment of amorphous solid dispersions by physical shelf-life modeling: a practical approach. Mol Pharm. 2001;18:2428–37.

    Article  CAS  Google Scholar 

  7. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14:475–86.

    Article  CAS  PubMed  Google Scholar 

  8. Palpandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:1195603.

    Google Scholar 

  9. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Delivery. 2020;27:110–27.

    Article  CAS  PubMed  Google Scholar 

  10. Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: an update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm. 2020;586:119560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Williams RO. Effects of the preparation process on the properties of amorphous solid dispersions. AAPS PharmSciTech. 2018;19:1971–84.

    Article  CAS  PubMed  Google Scholar 

  12. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res. 2008;25:969–78.

    Article  CAS  PubMed  Google Scholar 

  13. Taylor LS, Braun DE, Steed JW. Crystals and crystallization in drug delivery design. Mol Pharm. 2021;18:751–3.

    Article  PubMed  Google Scholar 

  14. Rumondor ACF, Marsac PJ, Stanford LA. Taylor LS Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm. 2009;6:1492–505.

    Article  CAS  PubMed  Google Scholar 

  15. Bikiaris D, Papageorgiou GZ, Stergiou A, Pavlidou E, Karavas E, Kanaze F, Georgarakis M. Physicochemical studies on solid dispersions of poorly water-soluble drugs: evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005;439:58–67.

    Article  CAS  Google Scholar 

  16. Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage - impact of different polymers. J Pharm Sci. 2013;102:171–84.

    Article  CAS  PubMed  Google Scholar 

  17. Wang X, Zhang L, Ma D, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Characterizing and exploring the differences in dissolution and stability between crystalline solid dispersion and amorphous solid dispersion. AAPS PharmSciTech. 2020;21:262.

    Article  CAS  PubMed  Google Scholar 

  18. Chmiel K, Knapik-Kowalczuk J, Jurkiewicz K, Sawicki W, Jachowicz R, Paluch M. A new method to identify physically stable concentration of amorphous solid dispersions (I): case of flutamide + kollidon VA64. Mol Pharm. 2017;14:3370–80.

    Article  CAS  PubMed  Google Scholar 

  19. Paudel A, Geppi M, Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103:2635–62.

    Article  CAS  PubMed  Google Scholar 

  20. Mollica G, Geppi M, Pignatello R, Veracini CA. Molecular properties of flurbiprofen and its solid dispersions with Eudragit RL100 studied by high- and low-resolution solid-state nuclear magnetic resonance. Pharm Res. 2006;23:2129–40.

    Article  CAS  PubMed  Google Scholar 

  21. Lu X, Huang C, Lowinger MB, Yang F, Xu W, Brown CW, Hesk D, Koynov A, Schenck L, Su Y. Molecular interactions in posaconazole amorphous solid dispersions from two-dimensional solid-state NMR spectroscopy. Mol Pharm. 2019;16:2579–89.

    Article  CAS  PubMed  Google Scholar 

  22. Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, Vogt FG. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm. 2010;7:1667–91.

    Article  CAS  PubMed  Google Scholar 

  23. Li M, Xu W, Su Y. Solid-state NMR spectroscopy in pharmaceutical sciences. Trends Anal Chem. 2021;135:116152.

    Article  CAS  Google Scholar 

  24. Aso Y, Yoshioka S, Miyazaki T, Kawanishi T, Tanaka K, Kitamura S, Takakura A, Hayashi T, Muranushi N. Miscibility of nifedipine and hydrophilic polymers as measured by 1H-NMR spin-lattice relaxation. Chem Pharm Bull. 2007;55:1227–31.

    Article  CAS  Google Scholar 

  25. Tishmack PA, Bugay DE, Byrn SR. Solid-state nuclear magnetic resonance spectroscopy in pharmaceutical applications. J Pharm Sci. 2003;92:441–74.

    Article  CAS  PubMed  Google Scholar 

  26. Geppi M, Borsacchi S, Carignani E. Study of disorder by solid-state NMR spectroscopy. In: Disordered Pharmaceutical Materials, M. Descamps (Ed.); 2016.

  27. Geppi M, Mollica G, Borsacchi S, Veracini CA, Solid-state NMR studies of pharmaceutical systems. Appl Spectr Reviews 2008;43:202–302

  28. Carignani E, Geppi LM, Combarieu Em Dorsacchi S. Solid state NMR of the mixing degree between Ginkgo biloba extract and a soy-lecithin-phosphatidylserine in a composite prepared by the phytosome method. Chem Africa. 2020;3:717–25.

    Article  CAS  Google Scholar 

  29. Okada K, Hirai D, Kumada S, Kosugi A, Hayashi Y, Onuki Y. 1H NMR relaxation study to evaluate the crystalline state of active pharmaceutical ingredients containing solid dosage forms using time domain NMR. J Pharm Sci 2019;108:451-456.

  30. Stueber D, Jehle S. Quantitative component analysis of solid mixtures by analyzing time domain 1H and 19F T1 saturation recovery curves (qSRC), J Pharm Sci 2017;106:1828-1838.

  31. Chattoraj S, Bhugra C, Li ZJ, Sun C. Effect of heating rate and kinetic model selection on activation energy of nonisothermal crystallization of amorphous felodipine. J Pharm Sci. 2014;103:3950–7.

    Article  CAS  PubMed  Google Scholar 

  32. Praveen C, Arthanareeswari M, Ravikiran A, Kamaraj P, Pavan KV. Kinetic studied on crystallization process of amorphous Vilazodone hydrochloride. Int J Pharm Sci. 2014;6:630–5.

    Google Scholar 

  33. Crowley KJ, Zografi G. The effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) on indomethacin crystallization from the amorphous state. Pharm Res. 2003;20:1417–22.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu L, Jona J, Nagapudi K, Wu T. Fast surface crystallization of amorphous griseofulvin below Tg. Pharm Res. 2010;27:1558–67.

    Article  CAS  PubMed  Google Scholar 

  35. Kestur US, Ivanesivic I, Alonzo DE, Taylor LS. Influence of particle size on the crystallization kinetics of amorphous felodipine powders. Powder Technol. 2013;236:197–204.

    Article  CAS  Google Scholar 

  36. Marsac PJ, Konno H, Taylor LS. A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res. 2006;23:2306–16.

    Article  CAS  PubMed  Google Scholar 

  37. Marsac PJ, Konno H, Rumondor ACF, Taylor LS. Recrystallization of nifedipine and felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) and sorbed water. Pharm Res. 2008;25:647–56.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Wong L, Yu L. Surface-enhanced crystallization of amorphous nifedipine. Mol Pharm. 2008;5:921–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kestur US, Taylor LS. Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. Cryst Eng Comm. 2010;12:2390–7.

    Article  CAS  Google Scholar 

  40. Ricarte RG, Lodge TP, Hillmyer MA. Detection of pharmaceutical drug crystallites in solid dispersions by transmission electron microscopy. Mol Pharm. 2015;12:983–99.

    Article  CAS  PubMed  Google Scholar 

  41. Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27:608–18.

    Article  CAS  PubMed  Google Scholar 

  42. Kaminska E, Tarnacka M, Wlodarczyk P, Jurkiewicz K, Kolodziejczyk K, Dulski M, Haznar-Garbacz D, Hawelek L, Kaminski K, Wlodarczyk A, Paluch M. Studying the impact of modified saccharides on the molecular dynamics and crystallization tendencies of model api nifedipine. Mol Pharm. 2015;12:3007–19.

    Article  CAS  PubMed  Google Scholar 

  43. Sibik J, Löbmann K, Rades T, Zeitler JA. Predicting crystallization of amorphous drugs with terahertz spectroscopy. Mol Pharm. 2015;12:3062–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pajzderska A, Fojud Z, Jarek M, Wasicki J. NMR relaxometry In the investigation of the kinetics of the recrystallization of felodipine. Powder Technol. 2019;347:35–41.

    Article  CAS  Google Scholar 

  45. Pajzderska A, Wasicki J. NMR relaxometry in a investigation of the kinetics of the recrystallization of a three-phase system. Int J Pharm. 2021;605:120800.

    Article  CAS  PubMed  Google Scholar 

  46. Rumondor ACF, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26:2599–606.

    Article  CAS  PubMed  Google Scholar 

  47. Tang XC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19:477–83.

    Article  CAS  PubMed  Google Scholar 

  48. Pajzderska A, Drużbicki K, Gonzalez MA, Jenczyk J, Mielcarek J, Wąsicki J. Diversity of methyl group dynamics in felodipine: a DFT supported NMR and neutron scattering study. Cryst Eng Comm. 2018;20:7371–85.

    Article  CAS  Google Scholar 

  49. Pajzderska A, Jenczyk J, Embs JP, Wasicki J. Exploring molecular reorientations in amorphous and recrystallized felodipine at the microscopic level. RSC Adv. 2020;10:37346–57.

    Article  CAS  Google Scholar 

  50. Konno H, Taylor LS. Ability of different polymers to inhibit the crystallization of amorphous, felodipine in the presence of moisture. Pharm Res. 2008;25:969–78.

    Article  CAS  PubMed  Google Scholar 

  51. Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26:2523–34.

    Article  CAS  PubMed  Google Scholar 

  52. Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQM. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm Res. 2010;27:1869–83.

    Article  CAS  PubMed  Google Scholar 

  53. Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99:4005–12.

    Article  CAS  PubMed  Google Scholar 

  54. Luebbert C, Klanke C, Sadowski G. Investigating phase separation in amorphous solid dispersions via Raman mapping. Int J Pharm. 2017;535:245–52.

    Article  PubMed  CAS  Google Scholar 

  55. Luebbert C, Wessner M, Sadowski G. Mutual impact of phase separation/crystallization and water sorption in amorphous solid dispersions. Mol Pharm. 2018;15:669–78.

    Article  CAS  PubMed  Google Scholar 

  56. Sarpal K, Delaney S, Zhang GGZ, Munson EJ. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug-polymer interactions. Mol Pharm. 2019;16:4836–51.

    Article  CAS  PubMed  Google Scholar 

  57. Ueda K, Okada H, Zhao Z, Higashi K, Moribe K. Application of solid-state 13C relaxation time to prediction of the recrystallization inhibition strength of polymers on amorphous felodipine at low polymer loading. Int J Pharm. 2020;581:119300.

    Article  CAS  PubMed  Google Scholar 

  58. Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105:2527–44.

    Article  CAS  PubMed  Google Scholar 

  59. Gordon M, Taylor LS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem. 1652;2:493–500.

    Article  Google Scholar 

  60. Powles JG, Mansfield P. Double-pulse nuclear resonance transients in solids. Phys Lett. 1962;2:58–9.

    Article  CAS  Google Scholar 

  61. Powles JG, Strange JH. Zero time resolution nuclear magnetic resonance transients in solids. Proc Phys Soc. 1963;82:6–15.

    Article  CAS  Google Scholar 

  62. PeakFit-Jandel Scientific Software, San Rafael, CA

  63. Schmidt-Rohr K. Spiess HW. London: Multidimensional solid-state N.M.R. and polymers Academic Press Limited; 1994.

    Google Scholar 

  64. Guo M. Solid-state high-resolution NMR studies on the miscibility of polymer blends. Trends Polym Sci. 1996;7:238–44.

    Google Scholar 

  65. Clauss J, Schmidt-Rohr K, Spiess HW. Determination of domain size in heterogeneous polymers by solid-state NMR. Acta Polym. 1993;44:1–17.

    Article  CAS  Google Scholar 

  66. Spiegel S, Schmidt-Rohr K, Boeffel C, Spiess HW. 1H spin diffusion coefficients of highly mobile polymers. Polymer. 1993;34:4566–9.

    Article  CAS  Google Scholar 

  67. Qi S, Moffat JG, Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm. 2013;10:918–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was part-financed by the Plenipotentiary of Poland to JINR, Dubna, Program “A study of the structure and molecular dynamics in crystalline and amorphous therapeutic compounds.”

Author information

Authors and Affiliations

Authors

Contributions

AP and JW contribute to the conceptualization and design of the work. The samples were prepared by JM. AP performed all of the experiments and data acquisition. Data was analyzed and visualized by AP and JW. The original draft was written by JW, while AP and JM helped with review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Pajzderska.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajzderska, A., Mielcarek, J. & Wąsicki, J. The Physical Stability of Felodipine and Its Recrystallization from an Amorphous Solid Dispersion Studied by NMR Relaxometry. AAPS PharmSciTech 23, 93 (2022). https://doi.org/10.1208/s12249-022-02234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02234-8

KEY WORDS

Navigation