Skip to main content
Log in

Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions

  • Research Paper
  • Theme: Formulation and Manufacturing of Solid Dosage Forms
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems.

Methods

Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (Tg). 13C and 15N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1H T1 and T relaxation measurements were used to probe miscibility and phase behavior of the dispersions.

Results

Tg values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40–90%, indicating a relatively strong drug-excipient interaction. 15N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at −360.7 ppm (unprotonated) and −344.4 ppm (protonated). Additionally, 1H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years.

Conclusions

15N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASD:

Amorphous solid dispersion

CP:

Cross polarization

DSC:

Differential scanning calorimetry

EE:

Eudragit® E

FTIR:

Fourier transform infrared spectroscopy

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

HPMCP:

Hydroxypropyl methylcellulose phthalate

IMC:

Indomethacin

MAS:

Magic-angle spinning

NMR:

Nuclear magnetic resonance spectroscopy

PSSA:

Polystyrene sulfonic acid

PVP:

Poly(vinylpyrrolidone)

PVPVA:

Poly(vinylpyrrolidone-co-vinyl acetate)

PXRD:

Powder X-ray diffraction

RF:

Radiofrequency

TOSS:

Total sideband suppression

UV:

Ultraviolet spectroscopy

XPS:

X-ray photoelectron spectroscopy

References

  1. Hollenbeck RG, Mitrevej KT, Fan AC. Estimation of the extent of drug-excipient interactions involving croscarmellose sodium. J Pharm Sci. 1983;72(3):325–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm. 1990;62(2–3):87–95.

    Article  CAS  Google Scholar 

  3. Durig T, Fassihi AR. Identification of stabilizing and destabilizing effects of excipient-drug interactions in solid dosage form design. Int J Pharm. 1993;97(1–3):161–70.

    Article  CAS  Google Scholar 

  4. Claudius JS, Neau SH. The solution stability of vancomycin in the presence and absence of sodium carboxymethyl starch. Int J Pharm. 1998;168(1):41–8.

    Article  CAS  Google Scholar 

  5. Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15(8):1202–6.

    Article  CAS  PubMed  Google Scholar 

  6. Byrn SR, Xu W, Newman AW. Chemical reactivity in solid-state pharmaceuticals: formulation implications. Adv Drug Deliv Rev. 2001;48(1):115–36.

    Article  CAS  PubMed  Google Scholar 

  7. McDaid FM, Barker SA, Fitzpatrick S, Petts CR, Craig DQM. Further investigations into the use of high sensitivity differential scanning calorimetry as a means of predicting drug-excipient interactions. Int J Pharm. 2003;252(1–2):235–40.

    Article  CAS  PubMed  Google Scholar 

  8. Bandi N, Wei W, Roberts CB, Kotra LP, Kompella UB. Preparation of budesonide- and indomethacin-hydroxypropyl-β-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur J Pharm Sci. 2004;23(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  9. Vueba M, Veiga F, Sousa J, Pina ME. Compatibility studies between ibuprofen or ketoprofen with cellulose ether polymer mixtures using thermal analysis. Drug Dev Ind Pharm. 2005;31(10):943–9.

    Article  CAS  PubMed  Google Scholar 

  10. Batista de Carvalho LAE, Marques MPM, Tomkinson J. Drug-excipient interactions in ketoprofen: a vibrational spectroscopy study. Biopolymers. 2006;82(4):420–4.

    Article  CAS  PubMed  Google Scholar 

  11. Balani PN, Wong SY, Ng WK, Widjaja E, Tan RBH, Chan SY. Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int J Pharm. 2010;391(1–2):125–36.

    Article  CAS  PubMed  Google Scholar 

  12. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excipients Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  13. Sperger DM. Solid-state NMR analysis of excipients and drug-excipient interactions in the amorphous state. PhD Thesis; 2010. 259 pp.

  14. Narang AS, Desai D, Badawy S. Impact of excipient interactions on solid dosage form stability. Pharm Res. 2012;29(10):2660–83.

    Article  CAS  PubMed  Google Scholar 

  15. Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Pharm Res. 2012;29(10):2639–59.

    Article  CAS  PubMed  Google Scholar 

  16. Dordevic SM, Radulovic TS, Cekic ND, Randelovic DV, Savic MM, Krajisnik DR, et al. Experimental design in formulation of diazepam nanoemulsions: physicochemical and pharmacokinetic performances. J Pharm Sci. 2013;102(11):4159–72.

    Article  CAS  PubMed  Google Scholar 

  17. Chadha R, Bhandari S. Drug-excipient compatibility screening-role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  PubMed  Google Scholar 

  18. Sachin TV, Deodhar MN, Prakya V. Advances in analytical techniques used in predicting drug-excipient interactions. Int J Pharm Technol. 2014;6(1):6388–417. 6330 pp

    Google Scholar 

  19. Tita B, Ledeti I, Bandur G, Tita D. Compatibility study between indomethacin and excipients in their physical mixtures. J Therm Anal Calorim. 2014;118(2):1293–304.

    Article  CAS  Google Scholar 

  20. Chakravarty P, Kothari S, Deese A, Lubach JW. Solid-state characterization of novel propylene glycol ester solvates isolated from lipid formulations. Mol Pharm. 2015;12(7):2551–7.

    Article  CAS  PubMed  Google Scholar 

  21. Schou-Pedersen AMV, Oestergaard J, Cornett C, Hansen SH. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies. Int J Pharm. 2015;485(1–2):97–107.

    Article  CAS  PubMed  Google Scholar 

  22. Lubach JW, Padden BE, Winslow SL, Salsbury JS, Masters DB, Topp EM, et al. Solid-state NMR studies of pharmaceutical solids in polymer matrices. Anal Bioanal Chem. 2004;378(6):1504–10.

    Article  CAS  PubMed  Google Scholar 

  23. Ueda H, Aikawa S, Kashima Y, Kikuchi J, Ida Y, Tanino T, et al. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer. J Pharm Sci. 2014;103(9):2829–38.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan X, Xiang T-X, Anderson BD, Munson EJ. Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR. Mol Pharm. 2015;12(12):4518–28.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691–8.

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe T, Ohno I, Wakiyama N, Kusai A, Senna M. Stabilization of amorphous indomethacin by co-grinding in a ternary mixture. Int J Pharm. 2002;241(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  27. Takeuchi H, Nagira S, Yamamoto H, Kawashima Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm. 2005;293(1–2):155–64.

    Article  CAS  PubMed  Google Scholar 

  28. Vyazovkin S, Dranca I. Effect of physical aging on nucleation of amorphous indomethacin. J Phys Chem B. 2007;111(25):7283–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bhugra C, Shmeis R, Pikal MJ. Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin. J Pharm Sci. 2008;97(10):4446–58.

    Article  CAS  PubMed  Google Scholar 

  30. Alonzo DE, Zhang GGZ, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  31. Greco K, Bogner R. Crystallization of amorphous indomethacin during dissolution: effect of processing and annealing. Mol Pharm. 2010;7(5):1406–18.

    Article  CAS  PubMed  Google Scholar 

  32. Karmwar P, Boetker JP, Graeser KA, Strachan CJ, Rantanen J, Rades T. Investigations on the effect of different cooling rates on the stability of amorphous indomethacin. Eur J Pharm Sci. 2011;44(3):341–50.

    Article  CAS  PubMed  Google Scholar 

  33. Ayenew Z, Paudel A, Rombaut P, Van den Mooter G. Effect of compression on non-isothermal crystallization behaviour of amorphous indomethacin. Pharm Res. 2012;29(9):2489–98.

    Article  CAS  PubMed  Google Scholar 

  34. Xiang T-X, Anderson BD. Molecular dynamics simulation of amorphous indomethacin. Mol Pharm. 2013;10(1):102–14.

    Article  CAS  PubMed  Google Scholar 

  35. Lin S-Y, Lin H-L, Chi Y-T, Huang Y-T, Kao C-Y, Hsieh W-H. Thermoanalytical and fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus solid dispersions. Int J Pharm. 2015;496(2):457–65.

    Article  CAS  PubMed  Google Scholar 

  36. Thakral NK, Mohapatra S, Stephenson GA, Suryanarayanan R. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional x-ray diffractometry. Mol Pharm. 2015;12(1):253–63.

    Article  CAS  PubMed  Google Scholar 

  37. Hattori Y, Otsuka M. Analysis of the stabilization process of indomethacin crystals via π-π and CH-π interactions measured by Raman spectroscopy and X-ray diffraction. Chem Phys Lett. 2016;661:114–8.

    Article  CAS  Google Scholar 

  38. Chokshi RJ, Shah NH, Sandhu HK, Malick AW, Zia H. Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration. J Pharm Sci. 2008;97(6):2286–98.

    Article  CAS  PubMed  Google Scholar 

  39. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability. Mol Pharm. 2013;10(10):3665–75.

    Article  CAS  PubMed  Google Scholar 

  40. Kojima T, Higashi K, Suzuki T, Tomono K, Moribe K, Yamamoto K. Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT EPO. Pharm Res. 2012;29(10):2777–91.

    Article  CAS  PubMed  Google Scholar 

  41. Liu H, Zhang X, Suwardie H, Wang P, Gogos CG. Miscibility studies of indomethacin and Eudragit E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci. 2012;101(6):2204–12.

    Article  CAS  PubMed  Google Scholar 

  42. Weuts I, Kempen D, Verreck G, Peeters J, Brewster M, Blaton N, et al. Salt formation in solid dispersions consisting of polyacrylic acid as a carrier and three basic model compounds resulting in very high glass transition temperatures and constant dissolution properties upon storage. Eur J Pharm Sci. 2005;25(4–5):387–93.

    Article  CAS  PubMed  Google Scholar 

  43. Song Y, Yang X, Chen X, Nie H, Byrn S, Lubach JW. Investigation of drug-excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12(3):857–66.

    Article  CAS  PubMed  Google Scholar 

  44. Song Y, Zemlyanov D, Chen X, Nie H, Su Z, Fang K, et al. Acid-base interactions of polystyrene sulfonic acid in amorphous solid dispersions using a combined UV/FTIR/XPS/ssNMR study. Mol Pharm. 2016;13(2):483–92.

    Article  CAS  PubMed  Google Scholar 

  45. Song Y, Zemlyanov D, Chen X, Su Z, Nie H, Lubach JW, et al. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy. Int J Pharm. 2016;514(2):456–64.

    Article  CAS  PubMed  Google Scholar 

  46. Metz G, Wu X, Smith SO. Ramped-amplitude cross polarization in magic-angle-spinning NMR. J Magn Reson Ser A. 1994;110(2):219–27.

    Article  CAS  Google Scholar 

  47. Pines A, Gibby MG, Waugh JS. Proton-enhanced nuclear induction spectroscopy. Method for high-resolution NMR of dilute spins in solids. J Chem Phys. 1972;56(4):1776–7.

    Article  CAS  Google Scholar 

  48. Stejskal EO, Schaefer J, Waugh JS. Magic-angle spinning and polarization transfer in proton-enhanced NMR. J Magn Reson (1969–1992). 1977;28(1):105–12.

    Article  CAS  Google Scholar 

  49. Dixon WT, Schaefer J, Sefcik MD, Stejskal EO, McKay RA. Total suppression of sidebands in CPMAS carbon-13 NMR. J Magn Reson (1969–1992). 1982;49(2):341–5.

    Article  CAS  Google Scholar 

  50. Song Z, Antzutkin ON, Feng X, Levitt MH. Sideband suppression in magic-angle-spinning NMR by a sequence of 5 pi pulses. Solid State Nucl Magn Reson. 1993;2(3):143–6.

    Article  CAS  PubMed  Google Scholar 

  51. Fung BM, Khitrin AK, Ermolaev K. An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson. 2000;142(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  52. Barich DH, Gorman EM, Zell MT, Munson EJ. 3-Methylglutaric acid as a 13C solid-state NMR standard. Solid State Nucl Magn Reson. 2006;30(3–4):125–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi S, Hayamizu K. Chemical shift standards in high-resolution solid-state NMR. 2. Nitrogen-15 nuclei. Bull Chem Soc Jpn. 1991;64(2):688–90.

    Article  CAS  Google Scholar 

  54. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  55. Couchman PR. Composition-dependent glass-transition temperatures and copolymers. Nature. 1982;298(5876):729–30.

    Article  CAS  Google Scholar 

  56. Couchman PR, Karasz FE. A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules. 1978;11(1):117–9.

    Article  CAS  Google Scholar 

  57. Chiang P-C, Cui Y, Ran Y, Lubach J, Chou K-J, Bao L, et al. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using griseofulvin as a model compound. AAPS J. 2013;15(2):608–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2014;11(1):329–37.

    Article  CAS  PubMed  Google Scholar 

  59. Pham TN, Watson SA, Edwards AJ, Chavda M, Clawson JS, Strohmeier M, et al. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm. 2010;7(5):1667–91.

    Article  CAS  PubMed  Google Scholar 

  60. Chakravarty P, Lubach JW, Hau J, Nagapudi K. A rational approach towards development of amorphous solid dispersions: experimental and computational techniques. Int J Pharm. 2017;519(1–2):44–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Lubach.

Additional information

Guest Editors: Tony Zhou and Tonglei Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubach, J.W., Hau, J. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions. Pharm Res 35, 65 (2018). https://doi.org/10.1007/s11095-018-2364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2364-y

KEY WORDS

Navigation