Skip to main content
Log in

Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Drying of wet granules in a fluidized bed dryer is an important part of the pharmaceutical tablet manufacturing process. Complicated gas-solid flow patterns appear in the fluidized bed dryer, and interphase momentum, heat, and mass transfer happen during the drying process. A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer. The evaporation of water from the surfaces of the particles and the cohesion force between the particles due to the formation of liquid bridges between the particles were also considered in this model. The model was validated by comparing the model predictions with the experimental data available from the literatures. The validated model was used to investigate the drying kinetics of the wet granules in the fluidized bed dryer. The results from numerical simulations showed that the dynamics and rate of increase of temperature of wet particles were considerably different from those of dry particles. Finally, the model was used to investigate the effects of inlet air velocity and inlet air temperature on the drying process. The model predicted increase in drying rate with the increase of inlet air velocity and inlet air temperature. This model can help not only to understand the multiphase multicomponent flow in fluidized bed dryer but also to optimize the drying process in the fluidized bed dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Srinivas G, Setti YP. Drying behavior of uniform and binary mixture of solids in a batch fluidized bed dryer. Powder Technol. 2013;241:181–7.

    Article  CAS  Google Scholar 

  2. Tatemoto Y, Mizukoshi R, Ehara W, Ishikawa E. Drying characteristics of food materials injected with organic solvents in a fluidized bed of inert particles under reduced pressure. J Food Eng. 2015;158:80–5.

    Article  CAS  Google Scholar 

  3. Syahrul S, Hamdullahpur F, Dincer I. Thermal analysis in fluidized bed drying of moist particles. Appl Therm Eng. 2002;22:1763–75.

    Article  CAS  Google Scholar 

  4. Philippsen CG, Vilela ACF, Zen LD. Fluidized bed modeling applied to the analysis of processes: review and state of the art. J Mater Res Technol. 2015;4:208–16.

    Article  CAS  Google Scholar 

  5. Royer J. High speed tracking of rupture and clustering in freely falling granular streams. Nature. 2009;459:1110–3.

    Article  CAS  PubMed  Google Scholar 

  6. Assari MR, Tabrizi HB, Najafpour E. Energy and exergy analysis of fluidized bed dryer based on two-fluid modeling. Int J Therm Sci. 2013;64:213–9.

    Article  Google Scholar 

  7. Sarker MSH, Ibrahim MN, Aziz NA, Punan MS. Drying kinetics energy consumption, and quality of paddy (mar-219) during drying by the industrial inclined bed dryer with or without fluidized bed dryer. Dry Technol. 2013;31(3):286–94.

    Article  Google Scholar 

  8. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. Espoo. Technical Research Center of Finland, VTT Publication; 1996. p 288.

  9. Crowe C, Schwarzkopf J, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles: CRC Press; 2012.

    Google Scholar 

  10. Anderson TB, Jackson R. Fluid mechanical description of fluidized beds. Equ motion, Ind Eng Chem Fundam. 1967;6:527–39.

    Article  CAS  Google Scholar 

  11. Ranjbaran M, Emadi B, Zare D. CFD simulation of deep bed paddy drying process and performance. Dry Technol. 2014;32:919–34.

    Article  Google Scholar 

  12. Jin G, Zhang M, Fang Z, Cui Z, Song C. Numerical investigation on effect of food particle mass on spout elevation of a gas-particle spout fluidized bed in a microwave-vacuum dryer. Dry Technol. 2015;33:591–604.

    Article  CAS  Google Scholar 

  13. Zhou ZY, Kuang SB, Chu KW, Yu AB. Discrete particle simulation of particle-fluid flow: model formulations and their applicability. J Fluid Mech. 2010;661:482–510.

    Article  Google Scholar 

  14. Sae-Heng S, Swasdisevi T, Amornkitbamrung M. Investigation of temperature distribution and heat transfer in fluidized bed using a combined CFD-DEM model. Dry Technol. 2011;29:697–708.

    Article  CAS  Google Scholar 

  15. Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaji WPM. Discrete particle simulation of bubble and slug formation in a two-dimensional gas fluidized bed: a hard-sphere approach. Chem Eng Sci. 1996;51:99–118.

    Article  CAS  Google Scholar 

  16. Xu BH, Yu AB. Numerical simulation of gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem Eng Sci. 1997;52:2785–809.

    Article  CAS  Google Scholar 

  17. Azmir J, Hou Q, Yu A. Discrete particle simulation of food grain drying in fluidized bed. Powder Technol. 2018;323:238–49.

    Article  CAS  Google Scholar 

  18. Askarishahi M, Salehi M-S, Radl S. Full physics simulations of spray-particle interaction in a bubbling fluidized bed. AICHE J. 2017;63(7):2569–87.

    Article  CAS  Google Scholar 

  19. Di Felice R. The voidage function for fluid particle interaction systems. Int J Multiphase Flow. 1994;20:153–9.

    Article  Google Scholar 

  20. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena: John Wiley & Sons; 2007.

    Google Scholar 

  21. Golshan S, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N, Blais B, Kuipers JAM. Review and implementation of CFD-DEM applied to chemical process systems. Chem Eng Sci. 2020;221:115646.

    Article  CAS  Google Scholar 

  22. Wilcox DC. Turbulence modelling for CFD. Second edition. Anaheim: DCW Industries; 1998.

  23. Cundall PA, Strack OD. A discrete element model for granular assemblies. Geotechnique. 1979;29:47–65.

    Article  Google Scholar 

  24. Kloss C. LIGGGHTS-PUBLIC documentation, Version 3.X. Available at https://www.cfdem.com/media/DEM/docu/Manual.html.

  25. Soulie F, Cherblanc F, El Youssoufi MS, Saix C. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int J Numer Anal Methods Geomech. 2006;30:213–28.

    Article  Google Scholar 

  26. Nase ST, Vargas WL, Abatan AA, McCartgy JJ. Discrete characterization tools for cohesive granular material. Powder Technol. 2001;116:214–23.

    Article  CAS  Google Scholar 

  27. Chaudhuri B, Muzzio FJ, Tomassone S. Modeling of heat transfer in granular flow in rotating vessels. Chem Eng Sci. 2006;61:6348–60.

    Article  CAS  Google Scholar 

  28. Li J, Mason D. A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol. 2000;112:273–82.

    Article  CAS  Google Scholar 

  29. Wang S, Luo K, Hu C, Fan J. Particle scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Ind Eng Chem Res. 2018;57:6774–89.

    Article  CAS  Google Scholar 

  30. Chen XD. The basics of a reaction engineering approach to modelling air-drying of small droplets or thin layer materials. Dry Technol. 2008;26(6):627–39.

    Article  CAS  Google Scholar 

  31. Putranto A, Chen XD, Xiao Z, Webley PA. Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA). J Food Eng. 2011;105:638–46.

    Article  Google Scholar 

  32. Ranz W, Marshall W. Evaporation from droplets. Chem Eng Prog. 1952;48:141–6.

    CAS  Google Scholar 

  33. Putranto A, Chen XD. The relative activation energy of food materials: important parameters to describe drying kinetics. Int J Food Prop. 2016;19(8):1726–37.

    Article  CAS  Google Scholar 

  34. Keey RB. Introduction to industrial drying operations. London: Pergamon; 1978.

    Google Scholar 

  35. Goniva C, Kloss C, Geen NG, Kuipers JAM, Pirker S. Influence of rolling friction on single spout fluidized bed simulation. Particuology. 2012;10(5):582–91.

    Article  Google Scholar 

  36. Kloss C, Goniva C, Hager A, Amberger S, Pirker S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dynam, An Int J. 2012;12:140–52.

    Article  Google Scholar 

  37. Jasak H, Jemcov A, Tukovic Z. OpenFOAM: A C++ library for complex physics simulations. In: Terze Z, Lacor C, editors. Proceedings of the International workshop on Coupled Methods in Numerical Dynamics (CMND2007). Croatia: Dubrovnik; 2007.

    Google Scholar 

  38. Briens L, Bojarra M. Monitoring fluidized bed drying of pharmaceutical granules. AAPS PharmSciTech. 2010;11(4):1612–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Walton OR. Numerical simulation of inelastic, frictional particle-particle interactions. Particulate Two-phase Flow. 1993;25:884–911.

    Google Scholar 

  40. Vu-Quoc L, Zhang X, Walton OR. A 3-D discrete-element method for dry granular flows ellipsoidal particles. Comput Methods Appl Mech Eng. 2000;187:483–528.

    Article  Google Scholar 

  41. Sahni EK, Chaudhuri B. Numerical simulations of contact drying in agitated filter-dryer. Chem Eng Sci. 2013;97:34–49.

    Article  CAS  Google Scholar 

  42. Sarkar S, Chaudhuri B. DEM modeling of high shear wet granulation of simple system. Asian J Pharm Sys. 2018;13:220–8.

    Google Scholar 

  43. Wormsbecker M, Pugsley T. The influence of moisture on the fluidization behaviour of porous pharmaceutical granule. Chem Eng Sci. 2008;63:4063–9.

    Article  CAS  Google Scholar 

  44. Kunii D, Levenspiel O. Fluidization engineering (2nd ed.) Butterworth-Heinemann series in chemical engineering. United States; 1992.

  45. Sakai M, Abe M, Shigeto Y, Mizutani S, Takahashi H, Viré A. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chem Eng J. 2014;244:33–43.

    Article  CAS  Google Scholar 

  46. Chu K, Chen J, Yu A. Applicability of a coarse-grainedCFD–DEM model on dense medium cyclone. Miner Eng. 2016;90:43–54.

    Article  CAS  Google Scholar 

  47. Ozel A, Kolehmainen J, Radl S, Sundaresan S. Fluid and particle coarsening of drag force for discrete-parcel approach. Chem Eng Sci. 2016;155:258–67.

    Article  CAS  Google Scholar 

  48. Tausendschön J, Kolehmainen J, Sundaresan S, Radl S. Coarse graining Euler-Lagrange simulations of cohesive particle fluidization. Powder Technol. 2020;364:167–82.

    Article  Google Scholar 

  49. Chen H, Liu X, Bishop C, Glasser BJ. Fluidized bed drying of a pharmaceutical powder: a parametric investigation of drying of calcium phosphate. Dry Technol. 2017;35(13):1602–18.

    Article  CAS  Google Scholar 

  50. Chen H, Rustagi S, Diep E, Langrish TAG, Glasser BJ. Scale-up of fluidized bed drying: impact of process and design parameters. Powder Technol. 2018;339:8–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jonathan Rifkin of University of Connecticut for helping to install CFDEM® coupling in Storrs HPC facility of University of Connecticut.

Funding

This work was funded by Takeda Pharmaceuticals International, Cambridge, MA.

Author information

Authors and Affiliations

Authors

Contributions

H.A.: Methodology, data analysis and interpretation, visualization, and writing–original draft

S.N.A.: Methodology and writing–review and editing

G.D.S.: Methodology

Y.G.: Methodology, supervision, and writing-review and editing

B.C.: Conceptualization, supervision, funding acquisition, and writing–review and editing

Corresponding author

Correspondence to Bodhisattwa Chaudhuri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, H., Ahsan, S.N., De Simone, G. et al. Computational Modeling of Drying of Pharmaceutical Wet Granules in a Fluidized Bed Dryer Using Coupled CFD-DEM Approach. AAPS PharmSciTech 23, 59 (2022). https://doi.org/10.1208/s12249-021-02180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02180-x

KEY WORDS

Navigation