Skip to main content

Advertisement

Log in

Optimization of Spray-Drying Parameters for Formulation Development at Preclinical Scale

  • Research Article
  • Theme: Advancements in Amorphous Solid Dispersions to Improve Bioavailability
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Spray-drying dispersion (SDD) is a well-established manufacturing technique used to prepare amorphous solid dispersions (ASDs), allowing for poorly soluble drugs to have improved bioavailability. However, the process of spray-drying with multiple factors and numerous variables can lead to a lengthy development timeline with intense resource requirements, which becomes the main obstacle limiting spray-drying development at the preclinical stage. The purpose of this work was to identify optimized preset parameters for spray-drying to support the early development of ASDs suitable for most circumstances rather than individual optimization. First, a mini-DoE (Design of Experiment) study was designed to evaluate the critical interplay of two key variables for spray-drying using a BUCHI B-290 mini spray dryer: solid load and atomizing spray gas flow. The critical quality attributes (CQAs) of the ASDs, including yield, particle size, morphology, and in vitro release profile, were taken into account to identify the impact of the key variables. The mini-DoE results indicated that a 5% solid load (w/v %) and 35 mm height atomizing spray gas flow were the most optimized parameters. These predefined values were further verified using different formulation compositions, including various polymers (Eudragit L100-55, HPMCAS-MF, PVAP, and PVP-VA64) and drugs (G-F, GEN-A, Indomethacin, and Griseofulvin), a range of drug loading (10 to 40%), and scale (200 mg to 200 g). Using these predefined parameters, all ASD formulations resulted in good yields as well as consistent particle size distribution. This was despite the differences in the formulations, making this a valuable and rapid approach ideal for early development. This strategy of leveraging the preset spray-drying parameters was able to successfully translate into a reproducible and efficient spray-drying platform while also saving material and reducing developmental timelines in early-stage formulation development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4:18–25.

    Article  PubMed  Google Scholar 

  2. Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, et al. Manufacturing strategies to develop amorphous solid dispersions: an overview. J Drug Deliv Sci Tec. 2019;55:101459.

    Article  Google Scholar 

  3. Newman A, Nagapudi K, Wenslow R. Amorphous solid dispersions: a robust platform to address bioavailability challenges. Ther Deliv. 2015;6:247–61.

    Article  CAS  PubMed  Google Scholar 

  4. den Mooter GV. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9:e79-85.

    Article  Google Scholar 

  5. Vodak DT, Morgen M. Design and Development of HPMCAS-Based Spray-Dried Dispersions. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous Solid Dispersions: Theory and Practice. Springer, New York: New York, NY; 2014. p. 303–22.

    Chapter  Google Scholar 

  6. He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104:3237–58.

    Article  CAS  PubMed  Google Scholar 

  7. Schittny A, Huwyler J, Puchkov M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv. 2019;27:110–27.

    Article  PubMed Central  Google Scholar 

  8. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315–499.

    Article  PubMed  Google Scholar 

  9. Kesisoglou F, Wu Y. Understanding the effect of API properties on bioavailability through absorption modeling. Aaps J. 2008;10:516–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101:1355–77.

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Feng X, Williams RO, Zhang F. Characterization of amorphous solid dispersions. J Pharm Investig. 2018;48:19–41.

    Article  Google Scholar 

  12. Jatwani S, Rana AC, Singh G, Aggarwal G. ChemInform abstract: an overview on solubility enhancement techniques for poorly soluble drugs and solid dispersion as an eminent strategic approach. Cheminform. 2013;44:no–no.

  13. Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, et al. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: a case study. Mol Pharm. 2008;5:981–93.

    Article  CAS  PubMed  Google Scholar 

  14. Mudie DM, Stewart AM, Biswas N, Brodeur TJ, Shepard KB, Smith A, et al. Novel high-drug-loaded amorphous dispersion tablets of posaconazole; in vivo and in vitro assessment. Mol Pharm. 2020;17:4463–72.

    Article  CAS  PubMed  Google Scholar 

  15. Chiang P-C, Cui Y, Ran Y, Lubach J, Chou K-J, Bao L, et al. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using Griseofulvin as a model compound. Aaps J. 2013;15:608–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang D, Lee Y-C, Shabani Z, Lamm CF, Zhu W, Li Y, et al. Processing impact on performance of solid dispersions. Pharm. 2018;10:142.

    CAS  Google Scholar 

  17. Hu Q, Choi DS, Chokshi H, Shah N, Sandhu H. Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development. Int J Pharm. 2013;450:53–62.

    Article  CAS  PubMed  Google Scholar 

  18. Chiang P-C, Ran Y, Chou K-J, Cui Y, Sambrone A, Chan C, et al. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS PharmSciTech. 2012;13:713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santos D, Maurício AC, Sencadas V, Santos JD, Fernandes MH, Gomes PS. Spray drying: an overview. 2018.

  20. Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interfac. 2015;223:40–54.

    Article  CAS  Google Scholar 

  21. Maury M, Murphy K, Kumar S, Shi L, Lee G. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59:565–73.

    Article  CAS  PubMed  Google Scholar 

  22. Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17:486–95.

    Article  CAS  PubMed  Google Scholar 

  23. Thackaberry EA. Oral formulation roadmap from early drug discovery to development. 2017;89–114.

  24. Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement. Saudi Pharm J. 2015;23:352–65.

    Article  PubMed  Google Scholar 

  25. Ousset A, Chirico R, Robin F, Schubert MA, Somville P, Dodou K. A Novel protocol using small-scale spray-drying for the efficient screening of solid dispersions in early drug development and formulation, as a straight pathway from screening to manufacturing stages. Pharm. 2018;11:81.

    CAS  Google Scholar 

  26. Ormes JD, Zhang D, Chen AM, Hou S, Krueger D, Nelson T, et al. Design of experiments utilization to map the processing capabilities of a micro-spray dryer: particle design and throughput optimization in support of drug discovery. Pharm Dev Technol. 2012;18:121–9.

    Article  PubMed  Google Scholar 

  27. Pohlen M, Lavrič Z, Prestidge C, Dreu R. Preparation, physicochemical characterisation and DoE optimisation of a spray-dried dry emulsion platform for delivery of a poorly soluble drug, Simvastatin. AAPS PharmSciTech. 2020;21:119.

    Article  CAS  PubMed  Google Scholar 

  28. Ousset A, Bassand C, Chavez P-F, Meeus J, Robin F, Schubert MA, et al. Development of a small-scale spray-drying approach for amorphous solid dispersions (ASDs) screening in early drug development. Pharm Dev Technol. 2018;24:1–47.

    Google Scholar 

  29. Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO. In vitro and in vivo behaviors of KinetiSol and spray-dried amorphous solid dispersions of a weakly basic drug and ionic polymer. Mol Pharm. 2020;17:2789–808.

    Article  CAS  PubMed  Google Scholar 

  30. Parrott N, Hainzl D, Scheubel E, Krimmer S, Boetsch C, Guerini E, et al. Physiologically based absorption modelling to predict the impact of drug properties on pharmacokinetics of bitopertin. Aaps J. 2014;16:1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui Y, Chiang P-C, Choo EF, Boggs J, Rudolph J, Grina J, et al. Systemic in vitro and in vivo evaluation for determining the feasibility of making an amorphous solid dispersion of a B-Raf (rapidly accelerated fibrosarcoma) inhibitor. Int J Pharm. 2013;454:241–8.

    Article  CAS  PubMed  Google Scholar 

  32. Bao L, An L, Ran Y. Solubilization of a poorly soluble B-Raf (rapidly accelerated fibrosarcoma) inhibitor: from theory to application. J Pharm Sci. 2018;107:327–33.

    Article  CAS  PubMed  Google Scholar 

  33. Monschke M, Kayser K, Wagner KG. Influence of particle size and drug load on amorphous solid dispersions containing pH-dependent soluble polymers and the weak base ketoconazole. AAPS PharmSciTech. 2021;22:44.

    Article  CAS  PubMed  Google Scholar 

  34. Kemp IC, Hartwig T, Herdman R, Hamilton P, Bisten A, Bermingham S. Spray drying with a two-fluid nozzle to produce fine particles: atomisation, scale-up and modelling. Dry Technol. 2015;34:1243–52.

    Article  Google Scholar 

  35. Elversson J, Millqvist-Fureby A, Alderborn G, Elofsson U. Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. J Pharm Sci. 2003;92:900–10.

    Article  CAS  PubMed  Google Scholar 

  36. Kanojia G, Willems G-J, Frijlink HW, Kersten GFA, Soema PC, Amorij J-P. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine. Int J Pharm. 2016;511:1098–111.

    Article  CAS  PubMed  Google Scholar 

  37. Buchi B-290 manual [Internet]. Available from: https://assets.buchi.com/image/upload/v1605800030/pdf/Operation-Manuals/OM_093001_B-290_en.pdf.

  38. Lu Z, Yang Y, Covington R-A, Bi Y (Vivian), Dürig T, Ilies MA, et al. Supersaturated controlled release matrix using amorphous dispersions of glipizide. Int J Pharm. 2016;511:957–68.

    Article  CAS  PubMed  Google Scholar 

  39. Qian F, Wang J, Hartley R, Tao J, Haddadin R, Mathias N, et al. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications. Pharm Res. 2012;29:2766–76.

    Article  CAS  Google Scholar 

  40. Fryer RM, Patel M, Zhang X, Baum-Kroker KS, Muthukumarana A, Linehan B, et al. Physical properties and effect in a battery of safety pharmacology models for three structurally distinct enteric polymers employed as spray-dried dispersion carriers. Front Pharmacol. 2016;7:368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ueda H, Hirakawa Y, Tanaka H, Miyano T, Sugita K. Applicability of an experimental grade of hydroxypropyl methylcellulose acetate succinate as a carrier for formation of solid dispersion with indomethacin. Pharm. 2021;13:353.

    CAS  Google Scholar 

  42. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27:2704–14.

    Article  CAS  PubMed  Google Scholar 

  43. Paudel A, Worku ZA, Meeus J, Guns S, den Mooter GV. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453:253–84.

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa N, Hiramatsu T, Suzuki R, Okamoto R, Shibagaki K, Fujita K, et al. Improvement in the water solubility of drugs with a solid dispersion system by spray drying and hot-melt extrusion with using the amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and d-mannitol. Eur J Pharm Sci. 2018;111:205–14.

    Article  CAS  PubMed  Google Scholar 

  45. Que C, Lou X, Zemlyanov DY, Mo H, Indulkar AS, Gao Y, et al. Insights into the dissolution behavior of Ledipasvir-Copovidone amorphous solid dispersions: role of drug loading and intermolecular interactions. Mol Pharm. 2019;16:5054–67.

    Article  CAS  PubMed  Google Scholar 

  46. Mudie DM, Buchanan S, Stewart AM, Smith A, Shepard KB, Biswas N, et al. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets. Int J Pharm X. 2020;2:100042.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Edward Yost, Evelyn Yanez, Nivedita Shetty, Steven Castleberry, Wei Zhang, Jonathan Hau, Wei Jia, and Yingqing Ran for their support throughout this project.

Funding

This research was funded by Genentech Inc.

Author information

Authors and Affiliations

Authors

Contributions

Marika Nespi: conceptualization, analysis, investigation, methodology, validation, and writing.

Robert Kuhn: analysis, investigation, validation, and writing.

Chun-Wan Yen: conceptualization, analysis, methodology, validation, supervision, and writing.

Joseph W. Lubach: investigation, review and editing.

Dennis Leung: supervision, resources, review and editing.

Corresponding author

Correspondence to Chun-Wan Yen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nespi, M., Kuhn, R., Yen, CW. et al. Optimization of Spray-Drying Parameters for Formulation Development at Preclinical Scale. AAPS PharmSciTech 23, 28 (2022). https://doi.org/10.1208/s12249-021-02160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02160-1

KEY WORDS

Navigation