Skip to main content

Practical Considerations for Spray Dried Formulation and Process Development

  • Chapter
  • First Online:
Discovering and Developing Molecules with Optimal Drug-Like Properties

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 15))

Abstract

Amorphous solid dispersion formulations provide a way to improve the bioperformance of poorly water soluble compounds by converting the crystalline drug to a high energy polymer stabilized amorphous state. Spray drying is a mature process with demonstrated production capability from lab to commercial scale for manufacturing amorphous solid dispersions. However, the impact of the drying process on the performance, manufacture, and stability of the drug product is often complex and can impact the chemical and physical stability of the drug, as well as the in vivo performance of the drug product. Physical and chemical properties of the components in the spray dried formulation can be linked to process risks. Analytical technology can build the connection between the process and the components of the formulation by measuring both the process dependent parameters and the product itself. Models can also be used to obtain a fundamental understanding of the system and be predictive of changes across process spaces. The properties of spray dried powder are amenable to multiple drug delivery routes such as oral suspensions and solid oral dosage forms. However, the process and environmental stresses put on the spray dried amorphous solid dispersions bring forth specific technical challenges. This chapter seeks to review the opportunities and failure modes associated with the spray drying process and the downstream fate of amorphous solid dispersions in several drug delivery routes while linking failure modes to the physical and chemical properties of the drug and formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderborn G (1995) Particle dimensions. In: Alderborn G, Nystrom C (eds) Pharmaceutical powder compaction technology. Marcel Dekker, New York, NY, pp 245–282

    Chapter  Google Scholar 

  • Alderborn G, Wikberg M (1995) Granule properties. In: Alderborn G, Nystrom C (eds) Pharmaceutical powder compaction technology. Marcel Dekker, New York, NY, pp 23–24

    Chapter  Google Scholar 

  • Angell CA (1985) Strong and fragile liquids. In: Nagai K, Wright GB (eds) Relaxation in complex systems, 1st edn. National Technical Information Service, US Dept Commerce, Springfield, VA

    Google Scholar 

  • Azadi M, Azadi M (2012) An analytical study of the effect of inlet velocity on the cyclone performance using mathematical models. Powder Tech 217:121–127

    Article  CAS  Google Scholar 

  • Bayvel L, Orzechowski Z (1993) Liquid atomization. Taylor and Francis, Washington, DC

    Google Scholar 

  • Benningtoven A (1994) Chemical analysis of inorganic and organic surfaces and thin films by static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Angew Chem 33(10):1023–1043

    Article  Google Scholar 

  • Boraey MA, Vehring R (2014) Diffusion controlled formation of microparticles. J Aerosol Sci 67:131–143

    Article  CAS  Google Scholar 

  • DiNunzio JC et al (2012) Use of highly compressible Ceolus (TM) microcrystalline cellulose for improved dosage form properties containing a hydrophilic solid dispersion. Drug Dev Ind Pharm 38(2):180–189

    Article  PubMed  CAS  Google Scholar 

  • Dobry DE et al (2009) A model-based methodology for spray-drying process development. J Pharmaceut Innovat 4(3):133–142

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry, 1st edn. Cornell University Press, New York, NY

    Google Scholar 

  • Friesen DT et al (2008) Hydroxypropyl methylcellulose acetate succinate-based spray dried dispersions: an overview. Mol Pharm 5(6):1003–1019

    Article  PubMed  CAS  Google Scholar 

  • Galia E et al (1998) Evaluation of various dissolution media for predicting in vivo performance of class i and ii drugs. Pharm Res 15(5):698–705

    Article  PubMed  CAS  Google Scholar 

  • GEA Process Engineering A/S (2014) Specialized GMP spray dryer for pharmaceutical products. http://www.niro.com/niro/cmsdoc.nsf/WebDoc/webb8hde6s?opendocument&q=DPH. Accessed 12 Jan 2014

  • Graham LJ, Taillon R, Mullin J, Wigle T (2010) Pharmaceutical process/equipment design methodology case study: cyclone design to optimize spray-dried-particle collection efficiency. Comput Chem Eng 34(7):1041–1048

    Article  CAS  Google Scholar 

  • Gupta P, Kakumanu VK, Bansal AK (2004) Stability and solubility of celecoxib-PVP amorphous dispersions: a molecular perspective. Pharm Res 21(10):1762–1769

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12(6):799–806

    Article  PubMed  CAS  Google Scholar 

  • Handscomb C (2008) Simulating droplet drying and particle formation in spray towers. s.l.:s.n

    Google Scholar 

  • Hansen OE, Ullum TU (2009) Air disperser for a spray dryer and a method for designing an air disperser. US, Patent No. US8157249

    Google Scholar 

  • Hughey JR et al (2013) The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus(R)—based solid dispersions. Eur J Pharm Sci 48:758–766

    Article  PubMed  CAS  Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2011) Impurities: guideline for residual solvents Q3C(R5), s.l.:s.n

    Google Scholar 

  • Lefebvre AH (1988) Atomization and sprays. CRC, New York, NY

    Google Scholar 

  • Liu H (2000) Science and engineering of droplets: fundamentals and applications, 1st edn. Noyes, Norwich

    Google Scholar 

  • Masters K (1985) Spray drying handbook, 4th edn. George Godwin, London

    Google Scholar 

  • Meyvis TK et al (1999) Fluorescence after photobleaching: a versatile tool for mobility and interaction monitoring in pharamceutical research. Pharm Res 16(8):1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Mirabella FM (1993) Practical spectroscopy series; internal reflection spectroscopy: theory and applications, 1st edn. Marcel Decker, Inc., New York, NY

    Google Scholar 

  • Nanse G et al (1997) Fluorination of carbon blacks: an X-ray photoelectron spectroscopy study: I. Aliterature review of XPS studies of fluorinated carbons. Carbon 35(2):175–194

    Article  CAS  Google Scholar 

  • Paterson AH, Zuo JY, Bronlund JE, Chatterjee R (2007) Stickiness curves of high fat dairy powders using the particle gun. Int Dairy J 17:998–1005

    Article  Google Scholar 

  • Paudel A, Van den Mooter G (2012) Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res 29:251–270

    Article  PubMed  CAS  Google Scholar 

  • Paudel A et al (2013) Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 453(1):253–284

    Article  PubMed  CAS  Google Scholar 

  • Perry RH, Green DW (1997) Perry’s chemical engineer’s handbook, 7th edn. McGraw Hill, New York, NY

    Google Scholar 

  • Pham TN et al (2010) Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T1 relaxation measurements. Mol Pharm 7(5):1667–1691

    Article  PubMed  CAS  Google Scholar 

  • Prescott JK, Barnum RA (2000) On powder flowability. Pharmaceut Tech 60–84:236

    Google Scholar 

  • Roe RJ, Zin WC (1980) Determination of polymer–polymer interaction parameter for polystyrene–polybutadiene pair. Macromolecules 13:1221–1228

    Article  CAS  Google Scholar 

  • Saito S, Taniguchi T, Kitamura K (1971) Interactions of anionic surfactants with nonionic polymers. Comparison of guanidinium, tetraalkylammonium, and alkali metal ions as counterions. J Colloid Interface Sci 37(1):154–164

    Article  CAS  Google Scholar 

  • Salcedo R, Paiva J (2010) Pharmaceuticals: efficient cyclone systems for fine particle collection. Filtrat Separ 47(1):36–39

    Article  CAS  Google Scholar 

  • Serajuddin A (1999) Solid dispersions of poorly water soluble drugs: early promises, subsequent problems and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Simonelli AP, Mehta SC, Higuchi WI (1970) Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. J Pharm Sci 59(5):633–638

    Article  PubMed  CAS  Google Scholar 

  • Sloth J et al (2006) Model based analysis of the drying of a single solution droplet in an ultrasonic levitator. Chem Eng Sci 61:2701–2709

    Article  CAS  Google Scholar 

  • Song C, Wang P, Makse H (2008) A phase diagram for jammed matter. Nature 453:629–632

    Article  PubMed  CAS  Google Scholar 

  • Strobl GR (2007) The physics of polymers, 3rd edn. Springer, New York, NY

    Google Scholar 

  • Strydom S, Zhu L, Yu L, de Villiers M (2009) Ultra-thin coatings for stabilizing amorphous drugs against surface-enhanced crystallization. Scientia

    Google Scholar 

  • Sun Y et al (2011) Glasses crystallize rapidly at surfaces by growing crystals upward. Proc Natl Acad Sci U S A 108:5990–5995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thybo P et al (2008) Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion.Pharmaceutical. Research 25(7):1610–1620

    CAS  Google Scholar 

  • Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25(5):999–1021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. Aerosol Sci 38:728–746

    Article  CAS  Google Scholar 

  • Vicente J, Pinto J, Menezes J, Gaspar F (2013) Fundamental analysis of particle formation in spray drying. Powder Tech 247:1–7

    Article  CAS  Google Scholar 

  • Wang L, Velikov V, Angell CA (2002) Direct determination of kinetic fragility indices of glass forming liquids by differential scanning calorimetry. J Phys Chem 117(22):10184–10192

    Article  CAS  Google Scholar 

  • Wan G, Sun G, Xue X, Shi M (2008) Solids concentration simulation of different size particles in a cyclone separator. Powder Tech 183(1):94–104

    Article  CAS  Google Scholar 

  • Welty JR, Wicks CE, Rorrer GL, Wilson RE (2000) Fundamentals of momentum, heat, and mass transfer, 4th edn. Wiley, New York, NY

    Google Scholar 

  • Williams H et al (2013) Strategies to address low solubility in discovery and development. Pharmacol Rev 65:315–499

    Article  PubMed  Google Scholar 

  • Wu T, Sun Y, Li N, de Villiers M, Yu L (2007) Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir 23(9):5148–5153

    Article  PubMed  CAS  Google Scholar 

  • Ziller KH, Rupprecht H (1988) Control of crystal growth in drug suspensions. Drug Dev Ind Pharm 14:2341–2370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lowinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Lowinger, M., Baumann, J., Vodak, D.T., Moser, J. (2015). Practical Considerations for Spray Dried Formulation and Process Development. In: Templeton, A., Byrn, S., Haskell, R., Prisinzano, T. (eds) Discovering and Developing Molecules with Optimal Drug-Like Properties. AAPS Advances in the Pharmaceutical Sciences Series, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1399-2_12

Download citation

Publish with us

Policies and ethics