Skip to main content

Advertisement

Log in

Fabrication, Evaluation, In Vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: a Promising Strategy for Colon Targeting

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 25 March 2022

This article has been updated

Abstract

The aim of present research aims to fabricate a system of enteric coating of hydrogel beads with pH-sensitive polymer, which shows solubility at pH > 7, and explore their potential to target the colon for drug delivery. Hydrogel beads were fabricated through the extrusion-dripping technique followed by ion gelation crosslinking. Moreover, freeze-thaw cycle was implemented for crosslinking of polyvinyl alcohol (PVA)/Ca-alginate blend beads. The oil-in-oil solvent evaporation method was adopted for the Eudragit coating of hydrogel beads using different coat: core ratios (4:1 or 8:1). Coated and uncoated hydrogel beads were evaluated by in vitro physicochemical properties, swelling and drug release behaviours, and in vivo pharmacokinetics, swelling, and toxicity evaluation. Diclofenac sodium was loaded as an experimental drug. Drug entrapment efficiency for the PVA/Ca-alginate beads was calculated as 98%, and for Ca-alginate beads, it came out to a maximum of 74%. Drug release study at various pH suggested that, unlike uncoated hydrogel beads, the coated beads delay the release of diclofenac sodium in low pH of the gastric and intestinal environment, thus targeting the colon for the drug release. It was concluded that Eudragit S-100-coated hydrogel beads could serve as a more promising and reliable way to target the colon for drug delivery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

References

  1. Dhanavel S, Revathy TA, Sivaranjani T, Sivakumar K, Palani P, Narayanan V, et al. 5-Fluorouracil and curcumin co-encapsulated chitosan/reduced graphene oxide nanocomposites against human colon cancer cell lines. Polym Bull. 2020;77(1):213–33.

    Article  CAS  Google Scholar 

  2. Nee, J., R.Z. Chippendale, and J.D. Feuerstein. Screening for colon cancer in older adults: risks, benefits, and when to stop. in Mayo Clinic Proceedings. 2020. Elsevier.

  3. Wong RS. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv Pharmacol Sci. 2019;2019:1–10.

    Google Scholar 

  4. Arora S, Budhiraja R. Chitosan-alginate microcapsules of amoxicillin for gastric stability and mucoadhesion. Journal of advanced pharmaceutical technology & research. 2012;3(1):68–74.

    CAS  Google Scholar 

  5. Sinha V, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1):19–38.

    Article  CAS  PubMed  Google Scholar 

  6. Hosseinzadeh H. Preparation of pH-sensitive carrageenan-g-poly (acrylic acid)/bentonite composite hydrogel for 5-fluorouracil controlled release in colon. Res J Pharm, Biol Chem Sci. 2011;2(2):446–56.

    CAS  Google Scholar 

  7. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–79.

    Article  CAS  PubMed  Google Scholar 

  8. BEADS, H., RESEARCH ARTICLE. 2014.

  9. Dai YN, et al. Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate–chitosan hydrogel beads. J Biomed Mater Res B Appl Biomater. 2008;86(2):493–500.

    Article  PubMed  Google Scholar 

  10. Chan E-S, Lee BB, Ravindra P, Poncelet D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J Colloid Interface Sci. 2009;338(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Xie X, Zhang X, Zhang J, Wang A. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol. 2010;46(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  12. Nochos A, Douroumis D, Bouropoulos N. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr Polym. 2008;74(3):451–7.

    Article  CAS  Google Scholar 

  13. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 2012;64:194–205.

    Article  Google Scholar 

  14. Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci. 2018;122:64–76.

    Article  CAS  PubMed  Google Scholar 

  15. Bajpai S, Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+ and Ba 2+ ions. React Funct Polym. 2004;59(2):129–40.

    Article  CAS  Google Scholar 

  16. Hua S, Ma H, Li X, Yang H, Wang A. pH-sensitive sodium alginate/poly (vinyl alcohol) hydrogel beads prepared by combined Ca 2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol. 2010;46(5):517–23.

    Article  CAS  PubMed  Google Scholar 

  17. Nugent MJ, Higginbotham CL. Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. Eur J Pharm Biopharm. 2007;67(2):377–86.

    Article  CAS  PubMed  Google Scholar 

  18. Hassan C, Peppas N. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. 2000:37–65.

  19. Tacx J, et al. Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO, ethyleneglycol and water. Polymer. 2000;41(3):947–57.

    Article  CAS  Google Scholar 

  20. Kulkarni RV, Boppana R, Krishna Mohan G, Mutalik S, Kalyane NV. pH-responsive interpenetrating network hydrogel beads of poly (acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci. 2012;367(1):509–17.

    Article  CAS  PubMed  Google Scholar 

  21. Paharia A, Yadav AK, Rai G, Jain SK, Pancholi SS, Agrawal GP. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech. 2007;8(1):E87–93.

    Article  PubMed Central  Google Scholar 

  22. M. Obeidat, W. and J.C. Price, Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method. J Microencapsul, 2006. 23(2): p. 195-202.

  23. Chawla A, Sharma P, Pawar P. Eudragit S-100 coated sodium alginate microspheres of naproxen sodium: Formulation, optimization and in vitro evaluation/Alginatne mikrosfere naproksen natrija obložene Eudragitom S-100: Priprava, optimizacija i in vitro vrednovanje. Acta Pharma. 2012;62(4):529–45.

    Article  CAS  Google Scholar 

  24. Rodríguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. J Control Release. 1998;55(1):67–77.

    Article  PubMed  Google Scholar 

  25. Rai G, Yadav AK, Jain NK, Agrawal GP. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon. Drug delivery. 2016;23(1):328–37.

    Article  CAS  PubMed  Google Scholar 

  26. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75(8):859–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lorenzo-Lamosa M, et al. Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release. 1998;52(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  28. Niu B, Jia J, Wang H, Chen S, Cao W, Yan J, et al. In vitro and in vivo release of diclofenac sodium-loaded sodium alginate/carboxymethyl chitosan-ZnO hydrogel beads. Int J Biol Macromol. 2019;141:1191–8.

    Article  CAS  PubMed  Google Scholar 

  29. Choi B, et al. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm. 2002;239(1-2):81–91.

    Article  CAS  PubMed  Google Scholar 

  30. Rehman S, et al. Enteric-coated Ca-alginate hydrogel beads: a promising tool for colon targeted drug delivery system. Polym Bull. 2020:1–15.

  31. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  CAS  PubMed  Google Scholar 

  32. Li S, Shen Y, Li W, Hao X. A common profile for polymer-based controlled releases and its logical interpretation to general release process. J Pharm Pharm Sci. 2006;9(2):238–44.

    CAS  PubMed  Google Scholar 

  33. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    Article  CAS  Google Scholar 

  34. Zhai X-J, Yu Y, Chen F, Lu YN. Comparative bioavailability and tolerability of single and multiple doses of 2 diclofenac sodium sustained-release tablet formulations in fasting, healthy chinese male volunteers. Curr Ther Res. 2013;75:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nerkar PP, Gattani SG. Cress seed mucilage based buccal mucoadhesive gel of venlafaxine: in vivo, in vitro evaluation. J Mater Sci Mater Med. 2012;23(3):771–9.

    Article  CAS  PubMed  Google Scholar 

  36. Murata Y, Miyamoto E, Kawashima S. Additive effect of chondroitin sulfate and chitosan on drug release from calcium-induced alginate gel beads. J Control Release. 1996;38(2-3):101–8.

    Article  CAS  Google Scholar 

  37. Park TG, Hoffman AS. Preparation of large, uniform size temperature-sensitive hydrogel beads. J Polym Sci A Polym Chem. 1992;30(3):505–7.

    Article  CAS  Google Scholar 

  38. Yoo MK, Choi HK, Kim TH, Choi YJ, Akaike T, Shirakawa M, et al. Drug release from xyloglucan beads coated with Eudragit for oral drug delivery. Arch Pharm Res. 2005;28(6):736–42.

    Article  CAS  PubMed  Google Scholar 

  39. Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm. 2006;323(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  40. Doria-Serrano M, et al. Physical characteristics of poly (vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules. 2001;2(2):568–74.

    Article  CAS  PubMed  Google Scholar 

  41. Thakral NK, Ray AR, Majumdar DK. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci Mater Med. 2010;21(9):2691–9.

    Article  CAS  PubMed  Google Scholar 

  42. Şanlı O, Ay N, Işıklan N. Release characteristics of diclofenac sodium from poly (vinyl alcohol)/sodium alginate and poly (vinyl alcohol)-grafted-poly (acrylamide)/sodium alginate blend beads. Eur J Pharm Biopharm. 2007;65(2):204–14.

    Article  PubMed  Google Scholar 

  43. Palomo M, Ballesteros M, Frutos P. Analysis of diclofenac sodium and derivatives. J Pharm Biomed Anal. 1999;21(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  44. Chiew CSC, Yeoh HK, Pasbakhsh P, Poh PE, Tey BT, Chan ES. Stability and reusability of alginate-based adsorbents for repetitive lead (II) removal. Polym Degrad Stab. 2016;123:146–54.

    Article  CAS  Google Scholar 

  45. Dainty A, et al. Stability of alginate-immobilized algal cells. Biotechnol Bioeng. 1986;28(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  46. Elnashar MM, et al. Surprising performance of alginate beads for the release of low-molecular-weight drugs. J Appl Polym Sci. 2010;116(5):3021–6.

    CAS  Google Scholar 

  47. Bajpai A, Saini R. Preparation and characterization of biocompatible spongy cryogels of poly (vinyl alcohol)–gelatin and study of water sorption behaviour. Polym Int. 2005;54(9):1233–42.

    Article  CAS  Google Scholar 

  48. Khan M, Sridhar B, Srinatha A. Development and evaluation of pH-dependent micro beads for colon targeting. Indian J Pharm Sci. 2010;72(1):18–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez-Hervas M, et al. In vitro evaluation of alginate beads of a diclofenac salt. Int J Pharm. 1998;163(1):23–34.

    Article  CAS  Google Scholar 

  50. Bajpai A, Giri A. Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym. 2002;53(2):125–41.

    Article  CAS  Google Scholar 

  51. Peppas, N., Analysis of Fickian and non-Fickian drug release from polymers. 1985.

  52. Shukla S, Bajpai A, Kulkarni R. Preparation, characterization, and water-sorption study of polyvinyl alcohol based hydrogels with grafted hydrophilic and hydrophobic segments. J Appl Polym Sci. 2005;95(5):1129–42.

    Article  CAS  Google Scholar 

  53. Wang H, Gong X, Guo X, Liu C, Fan YY, Zhang J, et al. Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. Int J Biol Macromol. 2019;121:1118–25.

    Article  CAS  PubMed  Google Scholar 

  54. Lin X, Miao L, Wang X, Tian H. Design and evaluation of pH-responsive hydrogel for oral delivery of amifostine and study on its radioprotective effects. Colloids Surf B: Biointerfaces. 2020;195:111200.

    Article  CAS  PubMed  Google Scholar 

  55. Etim N, et al. Haematological parameters and factors affecting their values. Agric Sci. 2014;2(1):37–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadia Rehman or Asadullah Madni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Ranjha, N.M., Shoukat, H. et al. Fabrication, Evaluation, In Vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: a Promising Strategy for Colon Targeting. AAPS PharmSciTech 22, 209 (2021). https://doi.org/10.1208/s12249-021-02082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02082-y

KEY WORDS

Navigation