Skip to main content

Advertisement

Log in

Recent Advancement in Topical Nanocarriers for the Treatment of Psoriasis

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Psoriasis is a life-threatening autoimmune inflammatory skin disease, triggered by T lymphocyte. Recently, the drugs most commonly used for the treatment of psoriasis include methotrexate (MTX), cyclosporine (CsA), acitretin, dexamethasone, and salicylic acid. However, conventional formulations due to poor absorptive capacity, inconsistent drug release characteristics, poor capability of selective targeting, poor retention of drug molecules in target tissue, and unintended skin reactions restrict the clinical efficacy of drugs. Advances in topical nanocarriers allow the development of prominent drug delivery platforms can be employed to address the critical issues associated with conventional formulations. Advances in nanocarriers design, nano-dimensional configuration, and surface functionalization allow formulation scientists to develop formulations for a more effective treatment of psoriasis. Moreover, interventions in the size distribution, shape, agglomeration/aggregation potential, and surface chemistry are the significant aspects need to be critically evaluated for better therapeutic results. This review attempted to explore the opportunities and challenges of current revelations in the nano carrier-based topical drug delivery approach used for the treatment of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Suresh K. Novel topical drug carriers as a tool for treatment of psoriasis: progress and advances. Afr J Pharm Pharmacol. 2013;7:138–47.

    Article  CAS  Google Scholar 

  2. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4.

  3. Chamcheu JC, Esnault S, Adhami VM, Noll AL, Banang-Mbeumi S, Roy T, et al. Fisetin, a 3,7,3′,4′-Tetrahydroxyflavone inhibits the PI3K/Akt/mTOR and MAPK pathways and ameliorates psoriasis pathology in 2D and 3D organotypic human inflammatory skin models. Cells. 2019;8:1089.

    Article  CAS  PubMed Central  Google Scholar 

  4. Vincent N, D RD, Bn VH. Progress in psoriasis therapy via novel drug delivery systems. Dermatol Reports [Internet]. 2014 [cited 2020 Apr 8];6. Available from: http://www.pagepress.org/journals/index.php/dr/article/view/5451

  5. Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon. 2019;5:e01343.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruela ALM, Perissinato AG, Lino ME de S, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52:527–44.

    Article  CAS  Google Scholar 

  7. Gorelick J, Shrom D, Sikand K, Renda L, Burge R, Dworkin C, et al. Understanding treatment preferences in patients with moderate to severe plaque psoriasis in the USA: results from a cross-sectional patient survey [Internet]. Adis Journals; 2019 [cited 2021 Jan 12]. p. 129599 Bytes. Available from: https://adisjournals.figshare.com/articles/Understanding_Treatment_Preferences_in_Patients_with_Moderate_to_Severe_Plaque_Psoriasis_in_the_USA_Results_from_a_Cross-Sectional_Patient_Survey/9923687

  8. Steven R Feldman. Treatment of psoriasis in adultsTopical Therapies for Psoriasis. 2020;

  9. Walunj M, Doppalapudi S, Bulbake U, Khan W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J Liposome Res. 2020;30:68–79.

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Shu G, Lu K, Xu X, Sun M, Qi J, et al. Flexible liposomal gel dual-loaded with all-trans retinoic acid and betamethasone for enhanced therapeutic efficiency of psoriasis. J Nanobiotechnol. 2020;18:80.

    Article  CAS  Google Scholar 

  11. Bavarsad N, Akhgari A, Seifmanesh S, Salimi A, Rezaie A. Statistical optimization of tretinoin-loaded penetration-enhancer vesicles (PEV) for topical delivery. DARU J Pharm Sci. 2016;24:7.

    Article  CAS  Google Scholar 

  12. Chen J, Ma Y, Tao Y, Zhao X, Xiong Y, Chen Z, et al. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J Liposome Res. 2020:1–15.

  13. Fathalla D, Youssef EMK, Soliman GM. Liposomal and ethosomal gels for the topical delivery of anthralin: preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics. 2020;12:446.

    Article  CAS  PubMed Central  Google Scholar 

  14. Gupta R, Gupta M, Mangal S, Agrawal U, Vyas SP. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif Cells Nanomed Biotechnol. 2014:1–10.

  15. Knudsen NØ, Rønholt S, Salte RD, Jorgensen L, Thormann T, Basse LH, et al. Calcipotriol delivery into the skin with PEGylated liposomes. Eur J Pharm Biopharm. 2012;81:532–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bahramizadeh M, Bahramizadeh M, Kiafar B, Jafarian AH, Nikpoor AR, Hatamipour M, et al. Development, characterization and evaluation of topical methotrexate-entrapped deformable liposome on imiquimod-induced psoriasis in a mouse model. Int J Pharm. 2019;569:118623.

    Article  CAS  PubMed  Google Scholar 

  17. Srisuk P, Thongnopnua P, Raktanonchai U, Kanokpanont S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int J Pharm. 2012;427:426–34.

    Article  CAS  PubMed  Google Scholar 

  18. Shah P, Goodyear B, Haq A, Puri V, Michniak-Kohn B. Evaluations of quality by design (QbD) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics. 2020;12:246.

    Article  CAS  PubMed Central  Google Scholar 

  19. Abu Hashim I, Abo El-Magd N, El-Sheakh A, Hamed M, Abd El-Gawad AE-G. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study. IJN. 2018;13:1059–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdelbary AA, AbouGhaly MHH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm. 2015;485:235–43.

    Article  CAS  PubMed  Google Scholar 

  21. Kassem AA, Abd El-Alim SH, Asfour MH. Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: formulation development, in vitro and in vivo evaluation of skin deposition. Int J Pharm. 2017;517:256–68.

    Article  CAS  PubMed  Google Scholar 

  22. Coven TR, Walters IB, Cardinale I, Krueger JG. PUVA-induced lymphocyte apoptosis: mechanism of action in psoriasis. Photodermatol Photoimmunol Photomed. 1999;15:22–7.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal R, Katare OP, Vyas SP. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm. 2001;228:43–52.

    Article  CAS  PubMed  Google Scholar 

  24. Benigni M, Pescina S, Grimaudo MA, Padula C, Santi P, Nicoli S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm. 2018;545:197–205.

    Article  CAS  PubMed  Google Scholar 

  25. Gupta AK, Brown MD, Ellis CN, Rocher LL, Fisher GJ, Baadsgaard O, et al. Cyclosporine in dermatology. J Am Acad Dermatol. 1989;21:1245–56.

    Article  CAS  PubMed  Google Scholar 

  26. Guo J-W, Cheng Y-P, Liu C-Y, Thong H-Y, Huang C-J, Lo Y, et al. Salvianolic acid B in microemulsion formulation provided sufficient hydration for dry skin and ameliorated the severity of imiquimod-induced psoriasis-like dermatitis in mice. Pharmaceutics. 2020;12:457.

    Article  CAS  PubMed Central  Google Scholar 

  27. Baboota S, Sharma S, Kumar A, Alam MS, Sahni J, Ali J. Nanocarrier-based hydrogel of betamethasone dipropionate and salicylic acid for treatment of psoriasis. Int J Pharma Investig. 2011;1:139–47.

    Article  CAS  Google Scholar 

  28. Behera J, Keservani RK, Yadav A, Tripathi M, Chadoker A. Methoxsalen loaded chitosan coated microemulsion for effective treatment of psoriasis. Int j Drug delivery. 2010;2:159–67.

    Article  CAS  Google Scholar 

  29. Amarji B, Garg NK, Singh B, Katare OP. Microemulsions mediated effective delivery of methotrexate hydrogel: more than a tour de force in psoriasis therapeutics. J Drug Target. 2016;24:147–60.

    Article  CAS  PubMed  Google Scholar 

  30. Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B: Biointerfaces. 2013;102:86–94.

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira M, Barreiros L, Segundo MA, Torres T, Selores M, Costa Lima SA, et al. Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: a targeted approach for psoriasis management. Colloids Surf B: Biointerfaces. 2017;159:23–9.

    Article  CAS  PubMed  Google Scholar 

  32. Silva MI, Barbosa AI, Costa Lima SA, Costa P, Torres T, Reis S. Freeze-dried Softisan® 649-based lipid nanoparticles for enhanced skin delivery of cyclosporine A. Nanomaterials. 2020;10:986.

    Article  CAS  PubMed Central  Google Scholar 

  33. Kakkar D, Dumoga S, Kumar R, Chuttani K, Mishra AK. PEGylated solid lipid nanoparticles: design, methotrexate loading and biological evaluation in animal models. Med Chem Commun. 2015;6:1452–63.

    Article  CAS  Google Scholar 

  34. Pradhan M, Singh D, Singh MR. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif Cells Nanomed Biotechnol. 2016;44:392–400.

    Article  CAS  PubMed  Google Scholar 

  35. Madan J, Dua K, Khude P. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharma Investig. 2014;4:60–4.

    Article  CAS  Google Scholar 

  36. Wang R. FK506-loaded solid lipid nanoparticles: preparation, characterization and in vitro transdermal drug delivery. Afr J Pharm Pharmacol [Internet]. 2012 [cited 2020 Jun 22];6. Available from: http://www.academicjournals.org/ajpp/abstracts/abstracts/abstract%202012/29%20Mar/Wang%20et%20al.htm

  37. Pinto MF, Moura CC, Nunes C, Segundo MA, Costa Lima SA, Reis S. A new topical formulation for psoriasis: development of methotrexate-loaded nanostructured lipid carriers. Int J Pharm. 2014;477:519–26.

    Article  CAS  PubMed  Google Scholar 

  38. Agrawal YO, Mahajan UB, Mahajan HS, Ojha S. Methotrexate-loaded nanostructured lipid carrier gel alleviates Imiquimod-induced psoriasis by moderating inflammation: formulation, optimization, characterization, in-vitro and in-vivo studies. IJN. 2020;15:4763–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iriventi P, Gupta N. Topical delivery of curcumin and caffeine mixture-loaded nanostructured lipid carriers for effective treatment of psoriasis. Phcog Mag. 2020;16:206.

    Article  CAS  Google Scholar 

  40. Sathe P, Saka R, Kommineni N, Raza K, Khan W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev Ind Pharm. 2019;45:826–38.

    Article  CAS  PubMed  Google Scholar 

  41. Kaur N, Sharma K, Bedi N. Topical Nanostructured lipid carrier based hydrogel of mometasone furoate for the treatment of psoriasis. PNT. 2018;6:133–43.

    Article  CAS  Google Scholar 

  42. Pivetta TP, Simões S, Araújo MM, Carvalho T, Arruda C, Marcato PD. Development of nanoparticles from natural lipids for topical delivery of thymol: investigation of its anti-inflammatory properties. Colloids Surf B: Biointerfaces. 2018;164:281–90.

    Article  CAS  PubMed  Google Scholar 

  43. Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv. 2017;14:165–77.

    Article  CAS  PubMed  Google Scholar 

  44. Borowska K, Wołowiec S, Rubaj A, Głowniak K, Sieniawska E, Radej S. Effect of polyamidoamine dendrimer G3 and G4 on skin permeation of 8-methoxypsoralene—in vivo study. Int J Pharm. 2012;426:280–3.

    Article  CAS  PubMed  Google Scholar 

  45. Torsekar R, Gautam M. Topical therapies in psoriasis. Indian Dermatol Online J. 2017;8:235–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Agrawal U, Mehra NK, Gupta U, Jain NK. Hyperbranched dendritic nano-carriers for topical delivery of dithranol. J Drug Target. 2013;21:497–506.

    Article  CAS  PubMed  Google Scholar 

  47. Fratoddi I, Benassi L, Botti E, Vaschieri C, Venditti I, Bessar H, et al. Effects of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse model. Nanomedicine. 2019;17:276–86.

    Article  CAS  PubMed  Google Scholar 

  48. Raghuwanshi N, Yadav TC, Srivastava AK, Raj U, Varadwaj P, Pruthi V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater Sci Eng C. 2019;95:57–71.

    Article  CAS  Google Scholar 

  49. Bessar H, Venditti I, Benassi L, Vaschieri C, Azzoni P, Pellacani G, et al. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B: Biointerfaces. 2016;141:141–7.

    Article  CAS  PubMed  Google Scholar 

  50. David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf B: Biointerfaces. 2014;122:767–77.

    Article  CAS  PubMed  Google Scholar 

  51. Crisan D, Scharffetter-Kochanek K, Crisan M, Schatz S, Hainzl A, Olenic L, et al. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp Dermatol. 2018;27:1166–9.

    Article  CAS  PubMed  Google Scholar 

  52. Pradhan M, Alexander A, Singh MR, Singh D, Saraf S, Saraf S, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother. 2018;107:447–63.

    Article  CAS  PubMed  Google Scholar 

  53. Shi N-Q, Qi X-R. Preparation of drug liposomes by reverse-phase evaporation. In: Lu W-L, Qi X-R, editors. Liposome-based drug delivery systems [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2018 [cited 2021 Mar 12]. p. 1–10. Available from: http://link.springer.com/10.1007/978-3-662-49231-4_3-1

  54. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20:228–43.

    Article  CAS  PubMed  Google Scholar 

  56. Shaker S, Gardouh A, Ghorab M. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharma Sci. 2017;12:346.

    Article  Google Scholar 

  57. Gouda A, Sakr OS, Nasr M, Sammour O. Ethanol injection technique for liposomes formulation: an insight into development, influencing factors, challenges and applications. J Drug Deliv Sci Technol. 2021;61:102174.

    Article  CAS  Google Scholar 

  58. Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965;13:253–IN28.

    Article  CAS  PubMed  Google Scholar 

  59. Isalomboto Nkanga C, Murhimalika Bapolisi A, Ikemefuna Okafor N, Werner Maçedo Krause R. General perception of liposomes: formation, manufacturing and applications. In: Catala A, editor. Liposomes - advances and perspectives [Internet]. IntechOpen; 2019 [cited 2021 Mar 12]. Available from: https://www.intechopen.com/books/liposomes-advances-and-perspectives/general-perception-of-liposomes-formation-manufacturing-and-applications

  60. Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol. 2007;129:604–13.

    Article  CAS  PubMed  Google Scholar 

  61. Ong S, Chitneni M, Lee K, Ming L, Yuen K. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8:36.

    Article  PubMed Central  CAS  Google Scholar 

  62. Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJA. Preparation of liposomes via detergent removal from mixed micelles by dilution: the effect of bilayer composition and process parameters on liposome characteristics. Pharmaceutisch Weekblad Scientific Edition. 1986;8:259–65.

    Article  CAS  PubMed  Google Scholar 

  63. Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids. 2020;165:104984.

    Article  CAS  Google Scholar 

  64. Bavarsad N, Fazly Bazzaz BS, Khamesipour A, Jaafari MR. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop. 2012;124:33–41.

    Article  CAS  PubMed  Google Scholar 

  65. Srinarong P, de Waard H, Frijlink HW, Hinrichs WL. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin Drug Deliv. 2011;8:1121–40.

    Article  CAS  PubMed  Google Scholar 

  66. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Delivery. 2016;23:564–78.

    Article  CAS  PubMed  Google Scholar 

  67. Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm. 2003;257:153–60.

    Article  CAS  PubMed  Google Scholar 

  68. Schubert M. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55:125–31.

    Article  CAS  PubMed  Google Scholar 

  69. Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target. 2012;20:813–30.

    Article  CAS  PubMed  Google Scholar 

  70. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol. 2016;44:27–40.

    Article  CAS  PubMed  Google Scholar 

  71. University of Piteşti, Romania, Modan EM, Plăiașu AG, University of Piteşti, Romania. Advantages and disadvantages of chemical methods in the elaboration of nanomaterials. MMS. 2020;43:53–60.

    Article  CAS  Google Scholar 

  72. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mughisa Munir, , Muhammad Hanif, , Nazar Muhammad Ranjha. Dendrimers and their applications 2015;2:55–66.

    Google Scholar 

  74. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. Baroda (India); 2016 [cited 2021 Mar 12]. p. 020048. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4945168

  75. Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol. 2015;43:282–90.

    Article  CAS  PubMed  Google Scholar 

  76. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–70.

    Article  CAS  PubMed  Google Scholar 

  77. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:1–26.

    Article  CAS  Google Scholar 

  79. Gisondi P, Del Giglio M, Girolomoni G. Treatment approaches to moderate to severe psoriasis. Int J Mol Sci. 2017;18.

  80. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol [Internet]. 2015 [cited 2020 Apr 25];6. Available from: http://journal.frontiersin.org/Article/10.3389/fphar.2015.00219/abstract

  81. Pierre MBR. dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303:607–21.

    Article  CAS  PubMed  Google Scholar 

  82. Peralta MF, Guzmán ML, Pérez AP, Apezteguia GA, Fórmica ML, Romero EL, et al. Liposomes can both enhance or reduce drugs penetration through the skin. Sci Rep. 2018;8:13253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270:119–25.

    Article  CAS  PubMed  Google Scholar 

  84. Dragicevic-Curic N, Winter S, Krajisnik D, Stupar M, Milic J, Graefe S, et al. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J Liposome Res. 2010;20:38–48.

    Article  CAS  PubMed  Google Scholar 

  85. Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11:20140459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  87. Decker C, Schubert H, May S, Fahr A. Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration. J Control Release. 2013;166:277–85.

    Article  CAS  PubMed  Google Scholar 

  88. Patel SS, Patel MS, Salampure S, Vishwanath B, Patel NM. Development and evaluation of liposomes for topical delivery of Tacrolimus (Fk-506). J Sci Res. 2010;2:585.

    Article  CAS  Google Scholar 

  89. Kumar R, Dogra S, Amarji B, Singh B, Kumar S, Sharma, et al. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: a randomized clinical trial. JAMA Dermatol. 2016;152:807.

    Article  PubMed  Google Scholar 

  90. Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arciniegas SM, Bernad MJ, Caballero SC, Hernandez D, Solis B, Vargas D. Process for physicochemical improvement of ultra-flexible liposomes loaded with insulin. pharmaceutical-sciences [Internet]. 2019 [cited 2020 Dec 11];81. Available from: http://www.ijpsonline.com/articles/process-for-physicochemical-improvement-of-ultraflexible-liposomes-loaded-with-insulin-3592.html

  92. Carreras JJ, Tapia-Ramirez WE, Sala A, Guillot AJ, Garrigues TM, Melero A. Ultraflexible lipid vesicles allow topical absorption of cyclosporin A. Drug Deliv and Transl Res. 2020;10:486–97.

    Article  CAS  Google Scholar 

  93. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol [Internet]. 2015 [cited 2020 Apr 7];6. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2015.00286

  94. Bozzuto G, Molinari A. Liposomes as nanomedical devices. IJN. 2015;975.

  95. Ghanbarzadeh S, Valizadeh H, Zakeri-Milani P. The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Advanced Pharmaceutical Bulletin; eISSN 2251-7308 [Internet]. Tabriz University of Medical Sciences; 2013 [cited 2021 Mar 12]; Available from: http://journals.tbzmed.ac.ir/PDF/APB/Manuscript/APB-3-25.pdf

  96. Ge X, Wei M, He S, Yuan W-E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11:55.

    Article  CAS  PubMed Central  Google Scholar 

  97. Mali N, Darandale S, Vavia P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv and Transl Res. 2013;3:587–92.

    Article  CAS  Google Scholar 

  98. Lakshmi P, Devi G, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: phase I and phase II studies. Indian J Dermatol Venereol Leprol. 2007;73:157.

    Article  CAS  PubMed  Google Scholar 

  99. Sezer AD, Cevher E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin Drug Deliv. 2012;9:1129–46.

    Article  CAS  PubMed  Google Scholar 

  100. Kucharekova M, Lieffers L, van de Kerkhof P, van der Valk P. Dithranol irritation in psoriasis treatment: a study of 68 inpatients. J Eur Acad Dermatol Venerol. 2005;19:176–9.

    Article  CAS  Google Scholar 

  101. Sehgal VN, Verma P, Khurana A. Anthralin/dithranol in dermatology: anthralin/dithranol. Int J Dermatol. 2014;53:e449–60.

    Article  CAS  PubMed  Google Scholar 

  102. Manconi M. Niosomes as carriers for tretinoin II. Influence of vesicular incorporation on tretinoin photostability. Int J Pharm. 2003;260:261–72.

    Article  CAS  PubMed  Google Scholar 

  103. Meng S, Sun L, Wang L, Lin Z, Liu Z, Xi L, et al. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf B: Biointerfaces. 2019;182:110352.

    Article  CAS  PubMed  Google Scholar 

  104. Ag Seleci D, Seleci M, Walter J-G, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;2016:1–13.

    Article  Google Scholar 

  105. Ahmad MZ, Mohammed AA, Mokhtar IM. Technology overview and drug delivery application of proniosome. Pharm Dev Technol. 2017;22:302–11.

    Article  CAS  PubMed  Google Scholar 

  106. Prasad V, Chaurasia S. Performance evaluation of non-ionic surfactant based tazarotene encapsulated proniosomal gel for the treatment of psoriasis. Mater Sci Eng C. 2017;79:168–76.

    Article  CAS  Google Scholar 

  107. Tanghetti E, Lebwohl M, Stein GL. Tazarotene revisited: safety and efficacy in plaque psoriasis and its emerging role in treatment strategy. J Drugs Dermatol. 2018;17:1280–7.

    PubMed  Google Scholar 

  108. Wollina U, Tirant M, Vojvodic A, Lotti T. Treatment of psoriasis: novel approaches to topical delivery. Open Access Maced J Med Sci. 2019;7:3018–25.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci. 2012;74:237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Desmet E, Van Gele M, Lambert J. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opin Drug Deliv. 2017;14:109–22.

    Article  CAS  PubMed  Google Scholar 

  111. Shah M, Agrawal GA. Self-microemulsifying system. In: Karakuş S, editor. Colloid science in pharmaceutical nanotechnology [Internet]. IntechOpen; 2020 [cited 2020 Apr 25]. Available from: https://www.intechopen.com/books/colloid-science-in-pharmaceutical-nanotechnology/self-microemulsifying-system

  112. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interf Sci. 2006;123–126:369–85.

    Article  CAS  Google Scholar 

  113. Langasco R, Tanrıverdi ST, Özer Ö, Roldo M, Cossu M, Rassu G, et al. Prolonged skin retention of clobetasol propionate by bio-based microemulsions: a potential tool for scalp psoriasis treatment. Drug Dev Ind Pharm. 2018;44:398–406.

    Article  CAS  PubMed  Google Scholar 

  114. Dixit GR, Shende AB. Formulation and evaluation of anthralin microemulsion gel using Karanj oil. Int J Pharm Sci Res. 2014;5(5):2041–50.

  115. Umezawa Y, Ozawa A. Optimal time for therapeutic drug monitoring of cyclosporine microemulsion in patients with psoriasis. Int J Dermatol. 2007;46:763–6.

    Article  CAS  PubMed  Google Scholar 

  116. Raza K, Negi P, Takyar S, Shukla A, Amarji B, Katare OP. Novel dithranol phospholipid microemulsion for topical application: development, characterization and percutaneous absorption studies. J Microencapsul. 2011;28:190–9.

    Article  CAS  PubMed  Google Scholar 

  117. Nunes A, Marto J, Gonçalves LM, Simões S, Félix R, Ascenso A, et al. Novel and modified neutrophil elastase inhibitor loaded in topical formulations for psoriasis management. Pharmaceutics. 2020;12:358.

    Article  CAS  PubMed Central  Google Scholar 

  118. Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release. 2016;239:182–202.

    Article  CAS  PubMed  Google Scholar 

  119. Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9:474.

    Article  PubMed Central  CAS  Google Scholar 

  120. Kerdel F, Zaiac M. An evolution in switching therapy for psoriasis patients who fail to meet treatment goals. Dermatol Ther. 2015;28:390–403.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2:289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Girish B, Rakesh P, et al. Solid lipid nanoparticles and nano lipid carriers: as novel solid lipid based drug carrier. Int Res J Pharm. 2011;2:40–52.

    Google Scholar 

  123. Sonawane R, Harde H, Katariya M, Agrawal S, Jain S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis. Expert Opin Drug Deliv. 2014;11:1833–47.

    Article  CAS  PubMed  Google Scholar 

  124. Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids. 2012;165:454–61.

    Article  CAS  PubMed  Google Scholar 

  125. Gupta V, Trivedi P. Ex vivo localization and permeation of cisplatin from novel topical formulations through excised pig, goat, and mice skin and in vitro characterization for effective management of skin-cited malignancies. Artif Cells Nanomed Biotechnol. 2015;43:373–82.

    Article  CAS  PubMed  Google Scholar 

  126. Das S, Ng WK, Kanaujia P, Kim S, Tan RBH. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B: Biointerfaces. 2011;88:483–9.

    Article  CAS  PubMed  Google Scholar 

  127. Essaghraoui A, Belfkira A, Hamdaoui B, Nunes C, Lima SAC, Reis S. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles. Nanomaterials. 2019;9:1204.

    Article  CAS  PubMed Central  Google Scholar 

  128. Salehi B, Fokou P, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12:11.

    Article  CAS  PubMed Central  Google Scholar 

  129. Trombino S, Servidio C, Laganà AS, Conforti F, Marrelli M, Cassano R. Viscosified solid lipidic nanoparticles based on naringenin and linolenic acid for the release of cyclosporine A on the skin. Molecules. 2020;25:3535.

    Article  CAS  PubMed Central  Google Scholar 

  130. Pitzanti G, Rosa A, Nieddu M, Valenti D, Pireddu R, Lai F, et al. Transcutol® P Containing SLNs for improving 8-methoxypsoralen skin delivery. Pharmaceutics. 2020;12:973.

    Article  CAS  PubMed Central  Google Scholar 

  131. Jain S, Addan R, Kushwah V, Harde H, Mahajan RR. Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int J Pharm. 2019;562:96–104.

    Article  CAS  PubMed  Google Scholar 

  132. Kang J-H, Chon J, Kim Y-I, Lee H-J, Oh D-W, Lee H-G, et al. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. IJN. 2019;14:5381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Amit Sharma. Nanostructured lipid carriers: a review. ournal of Developing Drugs. 2018;

  134. Martins AM, Ascenso A, Ribeiro HM, Marto J. Current and future therapies for psoriasis with a focus on serotonergic drugs. Mol Neurobiol. 2020;57:2391–419.

    Article  CAS  PubMed  Google Scholar 

  135. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig. 2015;5:182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fang C-L, Al-Suwayeh SA, Fang J-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7:41–55.

    Article  CAS  PubMed  Google Scholar 

  137. Nam S-H, 박종상. Investigation of tacrolimus loaded nanostructured lipid carriers for topical drug delivery. Bull Kor Chem Soc. 2011;32:956–60.

    Article  CAS  Google Scholar 

  138. Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm. 2010;401:93–102.

    Article  CAS  PubMed  Google Scholar 

  139. Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cells Nanomed Biotechnol. 2015;43:33–9.

    Article  CAS  PubMed  Google Scholar 

  140. Chhabra N, Goyal V, Sankhla S, Aseri M. Capsaicin: a promising therapy - a critical reappraisal. Int J Nutr Pharmacol Neurol Dis. 2012;2:8.

    Article  CAS  Google Scholar 

  141. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445:866–73.

    Article  CAS  PubMed  Google Scholar 

  142. Madan JR, Khobaragade S, Dua K, Awasthi R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatologic Therapy [Internet]. 2020 [cited 2020 Dec 14];33. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/dth.13370

  143. Karamsetty VM, Tej S. Nano structured lipid carrier based drug delivery system. J Chem Pharm Res. 2016;8.

  144. Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, et al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers**Cheng Yiyun and Wen Longping designed the experiments and wrote this manuscript, Man Na and other coauthors did the experiments and analyzed the data. J Pharm Sci. 2007;96:595–602.

    Article  CAS  Google Scholar 

  145. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain NK, et al. Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release. 2003;90:335–43.

    Article  CAS  PubMed  Google Scholar 

  146. Margaret EK, Kraeling TVD, Belgrave KR, Schlick K, Simanek E, Man S, et al. In vitro skin penetration of dendrimer nanoparticles. Appl In Vitro Toxicol. 2019;5:134–49.

    Article  CAS  Google Scholar 

  147. Venuganti VV, Sahdev P, Hildreth M, Guan X, Perumal O. Structure-skin permeability relationship of dendrimers. Pharm Res. 2011;28:2246–60.

    Article  CAS  PubMed  Google Scholar 

  148. Garg T, Rath G, Goyal AK. Nanotechnological approaches for the effective management of psoriasis. Artif Cells Nanomed Biotechnol. 2016;44:1374–82.

    Article  CAS  PubMed  Google Scholar 

  149. Jebbawi R, Oukhrib A, Clement E, Blanzat M, Turrin C-O, Caminade A-M, et al. An Anti-inflammatory poly(phosphorhydrazone) dendrimer capped with azabisphosphonate groups to treat psoriasis. Biomolecules. 2020;10:949.

    Article  CAS  PubMed Central  Google Scholar 

  150. Küchler S, Radowski MR, Blaschke T, Dathe M, Plendl J, Haag R, et al. Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm. 2009;71:243–50.

    Article  PubMed  CAS  Google Scholar 

  151. Winnicka K, Wroblewska M, Sosnowska K, Car H, Kasacka I. Evaluation of cationic polyamidoamine dendrimers’ dermal toxicity in the rat skin model. DDDT. 2015;1367.

  152. Czarnomysy R, Bielawska A, Bielawski K. Effect of 2nd and 3rd generation PAMAM dendrimers on proliferation, differentiation, and pro-inflammatory cytokines in human keratinocytes and fibroblasts. IJN. 2019;14:7123–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Damiani G, Pacifico A, Linder DM, Pigatto PDM, Conic R, Grada A, et al. Nanodermatology-based solutions for psoriasis: state-of-the art and future prospects. Dermatologic Therapy [Internet]. 2019 [cited 2020 Dec 8];32. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/dth.13113

  154. Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioall Sci. 2010;2:282–9.

    Article  CAS  Google Scholar 

  155. Gupta R, Rai B. Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci Rep. 2017;7:45292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. WIREs Nanomed Nanobiotechnol. 2015;7:428–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Siksha ‘O’ Anusandhan, Bhubaneswar. I express my sincere thanks to my guide. His valuable suggestions, comments, and guidance encouraged me to learn more day by day to complete this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Rath.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Psoriasis is an autoimmune disease characterized by itchy scaly patches affecting 1 to 3% of the world's population.

• Poor absorption capacity, inconsistent drug release characteristics, poor accumulation in target, and unintended skin reactions are the key issues related to the poor efficacy of conventional formulations.

• Nanoscale dimension, size distribution, shape, agglomeration/aggregation potential, and ease of structural and functional modifications of nanocarrier provide a gaining momentum for the development of formulation toward the effective treatment of psoriasis.

• Size-dependent cytotoxicity, lack of consistency in physicochemical properties, the poor long-term storage stability of nanocarriers, and poor in vitro/in vivo correlation of nanocarriers are the major hurdles for clinical translation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswasroy, P., Pradhan, D., Kar, B. et al. Recent Advancement in Topical Nanocarriers for the Treatment of Psoriasis. AAPS PharmSciTech 22, 164 (2021). https://doi.org/10.1208/s12249-021-02057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02057-z

KEY WORDS

Navigation