Skip to main content

Advertisement

Log in

Smartly Engineered PEGylated Di-Block Nanopolymeric Micelles: Duo Delivery of Isoniazid and Rifampicin Against Mycobacterium tuberculosis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In an attempt to deliver multiple drugs through a nanoparticulate platform, the present study was designed to deliver isoniazid (INH) and rifampicin (RMP) together through conjugation/encapsulation approaches using PEG-PLA (polyethylene glycol-poly-l-lactic acid) polymeric micelles. The objective of this study is to identify the preparation and evaluation of PEGylated polymeric micelles with dual drug delivery of INH and RMP for the effective treatment of tuberculosis (TB). Synthesized PEG-PLA di-block-copolymer was further conjugated to INH-forming PEG-PLA-INH (PPI) conjugate. Separately, these conjugates were loaded with RMP building the rifampicin-loaded PEG-PLA-INH polymeric micelles (PMC). The critical micelle concentration (CMC) for the PEG-PLA copolymer was found to be 8.9 ± 0.96 mg/L, and the size and zeta potential were observed to be 187.9 ± 2.68 nm and − 8.15 ± 1.24 mV (0.251 ± 0.042 pdi), respectively. Percent drug loading of PMC was 16.66 ± 1.52 and 23.07 ± 1.05 with entrapment efficiency of 72.30 ± 3.49 and 78.60 ± 2.67% for RMP and INH, respectively. RBC hemolysis capacity of PMC was significantly less than pure RMP and INH. Microplate Alamar blue assay (MABA) along with microscopy showed that the nanoconstructed PMC were more effective than the drugs, and approximately 8-fold reduction in overall minimum inhibitory concentration (MIC) was observed. The prepared duo drug-loaded nano-engineered polymeric micelles were highly effective against sensitive Mycobacterium tuberculosis strains and found to be less hemolytic in nature. The micelles could be further explored (in the future) for in vivo anti-TB studies to establish further to achieve better treatment for TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: WHO Global Tuberc. Program; 2017.

    Google Scholar 

  2. Sante ODL. World Health Organization. Communicable Diseases Cluster: Fixed-dose combination tablets for the treatment of tuberculosis. 1999. 

  3. Mitchison DA. Role of individual drug in chemotherapy of tuberculosis. Int J Tuber Lung Dis. 2000;4:790–800.

    Google Scholar 

  4. Joshi JM. Tuberculosis chemotherapy in the 21 century: back to the basics. Lung India. 2011;28:193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. The use of essential drugs, Ninth report of the WHO Expert Committee, Technical Report Series 895. Geneva: World Health Organization; 2000.

    Google Scholar 

  6. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 2004;10:S122–9.

    Article  CAS  PubMed  Google Scholar 

  7. Davies D, Glowinski JJ. Jaundice due to isoniazid. Tubercle. 1961;42(4):504–6.

    Article  CAS  PubMed  Google Scholar 

  8. Campos-Franco J, Gonzalez-Quintela A, Alende-Sixto MR. Isoniazid-induced hyperacute liver failure in a young patient receiving carbamazepine. Eur J Intern Med. 2004;15(6):396–7.

    Article  CAS  PubMed  Google Scholar 

  9. Tafazoli S, Mashregi M, O’Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. 2008;229(1):94–101.

    Article  CAS  PubMed  Google Scholar 

  10. Vidrio H, Medina M, Fernandez G, Lorenzana-Jimenez M, Campos AE. Enhancement of hydralazine hypotension by low doses of isoniazid: possible role of semicarbazide-sensitive amine oxidase inhibition. Gen Pharmacol Vasc Syst. 2000;35(4):195–204.

    Article  CAS  Google Scholar 

  11. Sullivan EA, Geoffroy P, Weisman R, Hoffman R, Frieden TR. Isoniazid poisonings in New York City. J Emerg Med. 1998;16(1):57–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gajendiran M, Abdul Kamal Nazer MM. Potentiometric back titration of isoniazid in pharmaceutical dosage forms using copper based mercury film electrode. J Korean Chem Soc. 2011;55(4):620–5.

    Article  CAS  Google Scholar 

  13. Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 2010;65(4–5):547–59.

    Article  CAS  Google Scholar 

  14. Lesorbre R, Ruffino J, Teyssier L, Achard F, Brefort G. Jaundice occurring during treatment with rifampicin: twelve observations. Rev Tuber Pneumonol. 1969;33:393.

    Google Scholar 

  15. Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem. 2007;17(26):2695–9.

    Article  CAS  Google Scholar 

  16. Khan I, Gothwal A, Sharma AK, Qayum A, Singh SK, Gupta U. Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine. Int J Bio Macromol. 2016;92:1242–1.

    Article  CAS  Google Scholar 

  17. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong ZY, Zhang J, Gan ZH, Jing XB. A novel rare earth coordination catalyst for polymerization of biodegradable aliphatic lactones and lactides. Polym Int. 1998;45(1):60–6.

    Article  Google Scholar 

  19. Veld PJA, In’t Velner EM, Van De WP, Hamhuis J, Dijkstra PJ, Feijen J. Melt block copolymerization of ε-caprolactone and L-lactide. J Polym Sci A Polym Chem. 1997;35(2):219–26.

    Article  Google Scholar 

  20. Gothwal A, Khan I, Gupta U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res. 2016;33:18–39.

    Article  CAS  PubMed  Google Scholar 

  21. Vainionpaa S, Rokkanen P, Tormala P. Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci. 1989;14:679–716.

    Article  CAS  Google Scholar 

  22. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.

    Article  CAS  PubMed  Google Scholar 

  23. Aryal S, Hu CMJ, Zhang L. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;26(4):251–60.

    Article  CAS  Google Scholar 

  24. Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly (ε-caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437–46.

    Article  CAS  Google Scholar 

  25. Li C, Xia Z, Hu J, Chen X, Zing X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res. 2007;9:777–85.

    Article  CAS  Google Scholar 

  26. Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376:176–85.

    Article  CAS  PubMed  Google Scholar 

  27. Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm. 2004;57:251–61.

    Article  CAS  PubMed  Google Scholar 

  28. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  29. Dash PN, Murthy L, Chowdhury PN. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm Drug Res. 2010;67:217–23.

    CAS  Google Scholar 

  30. Singhai AK, Jain S, Jain NK. Evaluation of an aqueous injection of ketoprofen. Pharmazie. 1997;52:149–51.

    CAS  PubMed  Google Scholar 

  31. Song H, Geng H, Ruan J, Wang K, Bao C, Wang J, et al. Development of polysorbate 80/phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models. Nanoscale Res Lett. 2011;6(1):354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar blue assay. J Clin Microbiol. 1998;36:362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta S, Shenoy VP, Bairy I, Muralidharan S. Diagnostic efficacy of Ziehl-Neelsen method against fluorescent microscopy in detection of acid fast bacilli. Asian Pac J Trop Med. 2010;3(4):328–9.

    Article  Google Scholar 

  34. Hennink WE, Soga O, Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release. 2005;103(2):341–53.

    Article  CAS  PubMed  Google Scholar 

  35. Park K, Jeong JH, Huh KM, Lee SC, Cho YW, Lee J. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(13):59–68.

    PubMed  Google Scholar 

  36. Opanasopit P, Yokoyama M, Watanabe M. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21(11):2001–7.

    Article  CAS  PubMed  Google Scholar 

  37. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257-75.

    Article  CAS  PubMed  Google Scholar 

  38. Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie. 2002;57:5–29.

    CAS  PubMed  Google Scholar 

  39. Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48(8):2951–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro binding characteristics of isoniazid, rifampicin and pyrazinamide to whole plasma, albumin and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lin CC, Metters AT. Metal-chelating affinity hydrogels for sustained protein release. J Biomed Mater Res. 2007;83A:954–64. https://doi.org/10.1002/jbm.a.31282.

    Article  CAS  Google Scholar 

  42. Wise R. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. II. Studies in man. J Antimicrob Chemother. 1983;12:105–18.

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomater. 2011;32:8281–90.

    Article  CAS  Google Scholar 

  44. Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Canosa JB, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5(8):6434–48.

    Article  CAS  PubMed  Google Scholar 

  45. Awaad A, Nakamura M, Ishimura K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine. 2012;8(5):627–36.

    Article  CAS  PubMed  Google Scholar 

  46. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frenkel OH, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353:26–32.

    Article  CAS  Google Scholar 

  48. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson PJ, et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol. 2007;2:441–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sahan Y, Gurbuz O, Goncagu G, Kara A, Ozakin C. Antimicrobial effect of PEG–PLA on food-spoilage microorganisms. Food Sci Biotechnol. 2017;26(4):1123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steven MD, Hotchkiss JH. Non-migratory bioactive polymers (NMBP) in food packaging. In: R. Ahvenainen (ed.) Novel food packaging techniques. 2003; pp. 71–102.

    Chapter  Google Scholar 

  51. Shen Z, Han G, Wang X, Luo J, Sun R. An ultra-light antibacterial bagasse-AgNP aerogel. J Mater Chem B. 2017;5:1155–8.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta A, Pant G, Mitra K, Madan J, Chourasia MK, Misra A. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014;11:1201–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from the Department of Science and Technology and the University Grants Commission, New Delhi, India, to Dr. Umesh Gupta in the form of Rajasthan DST R&D project [File no. 7(3) S & T/R & D/2016/6074]. The authors also would like to acknowledge the Kwality Pharmaceutical Limited, Amritsar, Punjab, India, for providing rifampicin and isoniazid as gift samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Gupta.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing financial interest.

Electronic supplementary material

ESM 1

(DOCX 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Gothwal, A., Khan, I. et al. Smartly Engineered PEGylated Di-Block Nanopolymeric Micelles: Duo Delivery of Isoniazid and Rifampicin Against Mycobacterium tuberculosis. AAPS PharmSciTech 19, 3237–3248 (2018). https://doi.org/10.1208/s12249-018-1151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1151-8

Key Words

Navigation