Skip to main content
Log in

Antimicrobial effect of PEG–PLA on food-spoilage microorganisms

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Polyethylene glycol (PEG) and polyethylene glycol–polylactic acid (PEG–PLA) have an organic structure and no negative effect on human health. The present study compares the antimicrobial effectiveness of PEG and PEG–PLA on microbial growth. The following pathogens and fungi were examined: seven bacteria strains and 10 fungi (four yeasts and six molds). PEG, a non-modified polymer, exhibited no inhibition effect on all test microorganisms. However, the antimicrobial effect increased with the concentration of PEG–PLA. Bacteria showed more sensitivity to PEG–PLA compared with the other microorganisms used in this study. Enterobacter ATCC 19434 was found to be the most resistant bacteria. Molds and yeasts were more resistant than bacteria against PEG–PLA. MIC and MFC could not be determined on the tested fungi owing to the level of concentrations used, with the exception of the yeast Candida albicans and the molds Penicillium expansum and Aspergillus parasiticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Huang Q, Wang X, Lu L, Deng X, Chen Z, Liang J, Li J, Huang X, Zhang Y, Yang X. The effectiveness of food-borne diseases training among clinicians in Guangdong, China. Food Control 33: 268–273 (2013)

    Article  Google Scholar 

  2. De Koster CG, Brul S. MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens, Curr. Opin. Food Sci. 10: 76–84 (2016)

    Article  Google Scholar 

  3. Byun Y, Kim YT, Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 100: 239–244 (2010)

    Article  CAS  Google Scholar 

  4. Shankaraiah GK, Shaikh BM, Chavan SA, Dawane BS. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of novel 1; 5-benzodiazepines and their antimicrobial activity, Chinese Chem. Let. 22: 65–68 (2011)

    Article  Google Scholar 

  5. Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry, Meat Sci. 62: 373–380. (2002)

    Article  CAS  Google Scholar 

  6. Zivanovic S, Chi S, Draughon AF. Antimicrobial activity of chitosan films enriched with essential oils, J Food Sci. 70(1): 45–51 (2005)

    Article  Google Scholar 

  7. Goncagul G, Gurbuz O, Sahan Y, Kara A. Polyethylene glycol coating of fresh eggs, Turk. Pat. Appl. 8 pp. CODEN: TRXXB5 TR 2009002991 B 20100721 CAN 154:309357 AN 2011:341719 CAPLUS (2010)

  8. Ashter SA. Introduction to Bioplastics Engineering, 1st edition, Elsevier, 81–151 (2016)

  9. Sung SY, Sina LT, Tee TT, Bee ST, Rahmat AR, Rahman WAWA, Tan AC, Vikhraman M. Antimicrobial agents for food packaging applications. Trends Food Sci. Tech. 33: 110–123 (2013)

    Article  CAS  Google Scholar 

  10. Kozlovskiy R, Shvets V, Kuznetsov A. Technological aspects of the production of biodegradable polymers and other chemicals from renewable sources using lactic acid. J. Clean Prod. http://dx.doi.org/10.1016/j.jclepro.2016.08.092 (2016)

  11. Gupta AP, Vimal Kumar V, New emerging trends in synthetic biodegradable polymers poly- lactide: a critique. Eur. Polym. J. 43: 4053 (2007)

    Article  CAS  Google Scholar 

  12. Rudnik E. Compostable Polymer Properties and Packaging Applications. In: Plastic Films in Food Packaging, Materials, Technology and Applications, 1st Edition, (Ed. By. S Ebnesajjad), 217–248 (2013)

  13. Chen Y, Park Y, Noda I, Jung YM. Influence of polyethylene glycol (PEG) chain length on the thermal behavior of spin-coated thin films of biodegradable poly(3- hydroxybutyrate-co-3-hydroxyhexanoate)/PEG blends. J. Mol. Struct. 1124: 159–163 (2016)

    Article  CAS  Google Scholar 

  14. Riley T, Stolnik S, Heald CR, Xiong CD, Garnett MC, Illum L, Davis SS. Physicochemical evaluation of nanoparticles assembled from poly lactic acid-poly ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir, 17: 3168–3174 (2001)

    Article  CAS  Google Scholar 

  15. Anonymous. Aerobic colony count by pour plate method. HPA Standard Method. Standards Unit, Evaluations and Standards Laboratory in Conjunction with the Regional Food, Water and Environmental Coordinators Forum, Issue 4.2, p14 (2008)

  16. Chung PY, Chung LY, Ngeow YF, Goh SH, Imiyabir Z. Antimicrobial activities of Malaysian plant Species. Pharm. Bio., 42(4–5): 292–300 (2004)

    Article  Google Scholar 

  17. Yin MC, Tsao SM. Inhibitory effect of seven Allium plants upon three Aspergillus species. Int. J. Food Microbiol. 49: 49–56 (1999)

    Article  CAS  Google Scholar 

  18. Lopez-Malo A, Alzamora SM, Palou E. Aspergillus flavus Growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J Food Microbiol. 99: 119–128 (2005)

    Article  CAS  Google Scholar 

  19. Chandrasekaran M, Venkatesalu V. Antibacterial and antifungal activity of Syzgium jambolanum seeds, J Ethnopharm. 91, 105–108 (2004)

    Article  CAS  Google Scholar 

  20. Mathabe MC, Nikolova RV, Lall N, Nyazemac NZ. Antibacterial activities of medicinal plants used for the treatment of diarrhea in Limpopo Province, South Africa. J Ethnopharm., 105, 286–293 (2006)

    Article  CAS  Google Scholar 

  21. Fazeli MR, Amin G, Attari MMA, Ashtiani H, Jamalifar H, Samadi N. Antimicrobial activities of Iranian sumac and avishan-e shirazi (Zataria multiflora) against some food-borne bacteria, Food Control 18, 646–649 (2007)

    Article  Google Scholar 

  22. Rangasamy O, Raoelison G, Rakotoniriana FEJ. Screening for anti-effective properties of several medicinal plant of the Mauritius flora. Ethnopharmacol., 109:331 (2007)

    Article  Google Scholar 

  23. Korukluoglu M, Gurbuz O, Sahan Y, Yigit A, Kacar O, Rouseff RL. Chemical characterization and antifungal activity of Origanum onites L. essential oils and extracts. Journal of Food Safety 29,144–161 (2009)

    Article  CAS  Google Scholar 

  24. Steven MD, Hotchkiss JH. Non-migratory bioactive polymers (NMBP) in food packaging. In; Novel food packaging techniques (Ed. by R. Ahvenainen), Woodhead Publishing Limited, 71–102 (2003)

  25. Luo J, Xie M, Wang X. Green fabrication of quaternized chitosan/rectorite/Ag NP nanocomposites with antimicrobial activity, Biomedical Materials, 9: 011001 (2014)

    Article  Google Scholar 

  26. Shen Z, Han G, Wang X, Luo J, Sun R. An ultra-light antibacterial bagasse-AgNP aerogel. Journal of Materials Chemistry B, 5: 1155–1158 (2017)

    Article  CAS  Google Scholar 

  27. Meng N, Zhou NL, Zhang SQ, Shen J. Synthesis and antifungal activities of polymer/montmorillonite–terbinafine hydrochloride nanocomposite films. Applied Clay Science 46,136–140 (2009)

    Article  CAS  Google Scholar 

  28. Huang X, Hu N, Wang X, Zhang YS, Sun R. Copper Sulfide Nanoparticle/Cellulose Composite Paper: Room-Temperature Green Fabrication for NIR laser inducible Ablation of Pathogenic Microorganisms. ACS Sustainable Chemistry & Engineering, 5, 2648–2655 (2017)

    Article  CAS  Google Scholar 

  29. Ozdamar K. Statistical analysis by package programme. 2nd edn., Vol. 2, Kaan Pub. Co., Eskisehir, Turkey (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Fund of the University of Uludag for their financial support to this research Project (Project No: KUAP(Z)- 2013/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Sahan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahan, Y., Gurbuz, O., Goncagul, G. et al. Antimicrobial effect of PEG–PLA on food-spoilage microorganisms. Food Sci Biotechnol 26, 1123–1128 (2017). https://doi.org/10.1007/s10068-017-0138-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0138-7

Keywords

Navigation