Skip to main content

Advertisement

Log in

Improved Oral Bioavailability, Therapeutic Efficacy, and Reduced Toxicity of Tamoxifen-Loaded Liquid Crystalline Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Present investigation deals with formulation and evaluation of tamoxifen (TMX)-loaded liquid crystalline nanoparticles (TMX-LCNPs) for improving oral bioavailability and safety of the existing treatment. Hexagonal Glyceryl monooleate-based TMX-LCNPs (GLCNPs) and Phytantriol-based TMX-LCNPs (PLCNPs) were prepared by dilution-through-hydrotrope method for oral administration. Oleic acid was incorporated in the lipid matrix to enhance the drug loading in the LCNPs. Optimized LCNPs displayed small particle size with a narrow distribution, sustained drug release and high gastrointestinal stability. TMX-LCNPs were found to be considerably higher cytotoxic to MCF-7 cells as compared to free TMX. Substantial fold enhancement in oral bioavailability (~7- and ~5-folds with TMX-GLCNPs and TMX-PLCNPs, respectively) was evident followed by significant reduction in tumor burden with lesser hepatotoxicity. Out of the two LCNP formulations, PLCNPs were found to be better in convalescing the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal AK, Kumar K, Swarnakar NK, Kushwah V, Jain S. “Liquid crystalline nanoparticles”: rationally designed vehicle to improve stability and therapeutic efficacy of insulin following oral administration. Mol Pharm. 2017;14:1874–82.

  2. Ayen WY, Garkhal K, Kumar N. Doxorubicin-loaded (PEG) 3-PLA nanopolymersomes: effect of solvents and process parameters on formulation development and in vitro study. Mol Pharm. 2011;8:466–78.

    Article  CAS  PubMed  Google Scholar 

  3. Barauskas J, Cervin C, Jankunec M, Špandyreva M, Ribokaitė K, Tiberg F, et al. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int J Pharm. 2010;391:284–91.

    Article  CAS  PubMed  Google Scholar 

  4. Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett. 2005;5:1615–9.

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri S, Buttini F, Rossi A, Bettini R, Colombo P, Ponchel G, et al. Ex vivo permeation of tamoxifen and its 4-OH metabolite through rat intestine from lecithin/chitosan nanoparticles. Int J Pharm. 2015;491:99–104.

    Article  CAS  PubMed  Google Scholar 

  6. Buchanan CM, Buchanan NL, Edgar KJ, Little JL, Malcolm MO, Ruble KM, et al. Pharmacokinetics of tamoxifen after intravenous and oral dosing of tamoxifen-hydroxybutenyl-beta-cyclodextrin formulations. J Pharm Sci. 2007;96:644–60.

    Article  CAS  PubMed  Google Scholar 

  7. Cho Y, Lee W, Choi J. Effects of curcumin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen, in rats: possible role of CYP3A4 and P-glycoprotein inhibition by curcumin. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2012;67:124–30.

    CAS  Google Scholar 

  8. Choi JS, Kang KW. Enhanced tamoxifen bioavailability after oral administration of tamoxifen in rats pretreated with naringin. Arch Pharm Res. 2008;31:1631–6.

    Article  CAS  PubMed  Google Scholar 

  9. Elefsiniotis IS, Pantazis KD, Ilias A, Pallis L, Mariolis A, Glynou I, et al. Tamoxifen induced hepatotoxicity in breast cancer patients with pre-existing liver steatosis: the role of glucose intolerance. Eur J Gastroenterol Hepatol. 2004;16:593–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gao FF, Lv JW, Wang Y, Fan R, Li Q, Zhang Z, et al. Tamoxifen induces hepatotoxicity and changes to hepatocyte morphology at the early stage of endocrinotherapy in mice. Biomedical reports. 2016;4:102–6.

    Article  PubMed  Google Scholar 

  11. GreishK. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37.

  12. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15:1032–40.

    Article  CAS  PubMed  Google Scholar 

  13. Han F, Li S, Yin R, Liu H, Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp. 2008;315:210–6.

    Article  CAS  Google Scholar 

  14. Hashem FM, Nasr M, Khairy A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm Dev Technol. 2014;19:824–32.

    Article  CAS  PubMed  Google Scholar 

  15. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011b;32:503–15.

    Article  CAS  PubMed  Google Scholar 

  16. Jain AK, Thanki K, Jain S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm. 2013;10:3459–74.

    Article  CAS  PubMed  Google Scholar 

  17. Jain AK, Thanki K, Jain S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm Res. 2014;31:923–45.

    Article  CAS  PubMed  Google Scholar 

  18. Jain S, Bhankur N, Swarnakar NK, Thanki K. Phytantriol based “stealth” lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel. Pharm Res. 2015;32:3282–92.

    Article  CAS  PubMed  Google Scholar 

  19. Jain S, Chauhan D, Jain A, Swarnakar N, Harde H, Mahajan R, et al. Stabilization of the nanodrug delivery systems by lyophilization using universal step-wise freeze drying cycle. Indian Patent Application No. 2559. 2011a.

  20. Kapse SV, Gaikwad RV, Samad A, Devarajan PV. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. Int J Pharm. 2012;429:104–12.

    Article  CAS  PubMed  Google Scholar 

  21. Kojima T, Katoh F, Matsuda Y, Teraoka R, Kitagawa S. Physicochemical properties of tamoxifen hemicitrate sesquihydrate. Int J Pharm. 2008;352:146–51.

    Article  CAS  PubMed  Google Scholar 

  22. Lai J, Lu Y, Yin Z, Hu F, Wu W. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomedicine. 2010;5:13–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Li C, Kim M, Choi H, Choi J. Effects of baicalein on the pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats: possible role of cytochrome P450 3A4 and P-glycoprotein inhibition by baicalein. Arch Pharm Res. 2011;34:1965–72.

    Article  CAS  PubMed  Google Scholar 

  24. Lian R, Lu Y, Qi J, Tan Y, Niu M, Guan P, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech. 2011;12:1234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lombardo D, Kiselev MA, Magazù S, Calandra P. Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Adv Condens Matter Phys. 2015. http://dx.doi.org/10.1155/2015/151683.

  26. Nguyen T-H, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011a;153:180–6.

    Article  CAS  PubMed  Google Scholar 

  27. Rizwan S, Hanley T, Boyd B, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98:4191–204.

    Article  CAS  PubMed  Google Scholar 

  28. Rossetti FC, Fantini MC, Carollo ARH, Tedesco AC, Lopes Badra Bentley MV. Analysis of liquid crystalline nanoparticles by small angle X‐ray diffraction: evaluation of drug and pharmaceutical additives influence on the internal structure. J Pharm Sci. 2011;100:2849–57.

    Article  CAS  PubMed  Google Scholar 

  29. Shi X, Peng T, Huang Y, Mei L, Gu Y, Huang J, et al. Comparative studies on glycerol monooleate-and phytantriol-based cubosomes containing oridonin in vitro and in vivo. Pharm Dev Technol. 2015;1–8.

  30. Shin SC, Choi JS. Effects of epigallocatechin gallate on the oral bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Anti-Cancer Drugs. 2009;20:584–8.

  31. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17:5748–56.

    Article  CAS  Google Scholar 

  32. Swami, R., Singh, I., Jeengar, M.K., Naidu, V., Khan, W. & Sistla, R., 2015. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int. J. Pharm, 486, 287–296.

  33. Swarnakar NK, Jain V, Dubey V, Mishra D, Jain NK. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res. 2007;24:2223–30.

    Article  CAS  PubMed  Google Scholar 

  34. Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res. 2014a;31:1219–38.

    Article  CAS  PubMed  Google Scholar 

  35. Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res. 2014b;31:1219–38.

    Article  CAS  PubMed  Google Scholar 

  36. Swarnakar NK, Thanki K, Jain S. Lyotropic liquid crystalline nanoparticles of CoQ10: implication of lipase digestibility on oral bioavailability, in vivo antioxidant activity, and in vitro–in vivo relationships. Mol Pharm. 2014c;11:1435–49.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Z, Tan Y, Chen M, Dian L, Shan Z, Peng X, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech. 2012;13:1483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, et al. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine. 2012a;7:3703–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, et al. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine. 2012b;7:3703–18.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, NIPER for providing the necessary infrastructure and facilities. R.S is grateful to Science and Engineering Research Board (SERB), DST, GOI, New Delhi, for providing research fellowship. VK is grateful to Council of Scientific and Industrial Research (CSIR), GOI, New Delhi for providing fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Heeralal, B., Swami, R. et al. Improved Oral Bioavailability, Therapeutic Efficacy, and Reduced Toxicity of Tamoxifen-Loaded Liquid Crystalline Nanoparticles. AAPS PharmSciTech 19, 460–469 (2018). https://doi.org/10.1208/s12249-017-0851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0851-9

KEY WORDS

Navigation