Skip to main content

Advertisement

Log in

Letrozole-Loaded Nano-formulations as a Drug Delivery System for Cancer Therapy: Recent Developments

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Letrozole (LTZ) is a powerful oral aromatase inhibitor in vitro, in vivo (in animals), and in people that are nonsteroidal and reversible. Other aromatase inhibitors (AIs), like anastrozole, exemestane, formestane, and aminoglutethimide, are less effective than letrozole of potency. LTZ also effectively suppresses intratumoral aromatase in vivo. It seems that aromatase is the target of letrozole’s effect. Several animal models have revealed that LTZ has powerful antitumor properties. Low nanomolar quantities of letrozole successfully suppressed aromatase activity in mammary adipose tissue as well as breast cancer LTZ, which has been approved and is used as a treatment for postmenopausal women with hormone receptor-positive (HR+) primary breast cancer since it efficiently inhibits estrogen production. By encapsulating LTZ with polymer nanoparticles, liposomes, nanoemulsions, carbon-based nanoparticles (CBNs), solid lipid nanocarriers (SLNs), and nanostructured lipid carriers (NLCs), some issues have been resolved by increasing solubility and biostability. The targeted delivery and release of LTZ using some of the nanocarriers and several examples of co-delivery of different drugs like curcumin, quercetin, celecoxib, and cyclophosphamide with LTZ employing the nanoparticles mentioned above and their exhibited cytotoxicity against several cell lines like MCF-7, SK-BR-3, MDA-MB-231, and MDA-321 have also been examined in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors declare that all data and materials support their published claims and comply with field standards.

References

  1. Bergers, G., & Fendt, S.-M. (2021). The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 21, 162–180. https://doi.org/10.1038/s41568-020-00320-2

    Article  Google Scholar 

  2. Sudhakar, A. (2009). History of cancer, ancient and modern treatment methods. Journal of Cancer Science & Therapy, 1, 1–4. https://doi.org/10.4172/1948-5956.100000e2

    Article  Google Scholar 

  3. Pourmadadi, M., Abbasi, P., Eshaghi, M. M., Bakhshi, A., Manicum, A. L., Rahdar, A., Pandey, S., Jadoun, S., & Díez-Pascual, A. M. (2022). Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. Journal of Drug Delivery Science and Technology, 78, 103982. https://doi.org/10.1016/j.jddst.2022.103982

    Article  Google Scholar 

  4. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 7–34. https://doi.org/10.3322/caac.21551

    Article  Google Scholar 

  5. Parvaneh, S., Pourmadadi, M., Abdouss, M., Pourmousavi, S. A., Yazdian, F., Rahdar, A., & Díez-Pascual, A. M. (2023). Carboxymethyl cellulose/starch/reduced graphene oxide composite as a pH-sensitive nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules, 241, 124566. https://doi.org/10.1016/j.ijbiomac.2023.124566

    Article  Google Scholar 

  6. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  7. Roointan, A., Mir, T. A., Wani, S. I., Hussain, K. K., Ahmed, B., Abrahim, S., Savardashtaki, A., Gandomani, G., Gandomani, M., Chinnappan, R., & Akhtar, M. H. (2019). Early detection of lung cancer biomarkers through biosensor technology: A review. Journal of Pharmaceutical and Biomedical Analysis, 164, 93–103. https://doi.org/10.1016/j.jpba.2018.10.017

    Article  Google Scholar 

  8. McGuire, S. (2016). World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in Nutrition (Bethesda, Md.), 7, 418–419. https://doi.org/10.3945/an.116.012211

    Article  Google Scholar 

  9. Carvalho, T. M., Cardoso, H. J., Figueira, M. I., Vaz, C. V., & Socorro, S. (2019). The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. European Journal of Medicinal Chemistry, 171, 343–363. https://doi.org/10.1016/j.ejmech.2019.03.053

    Article  Google Scholar 

  10. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588

    Article  Google Scholar 

  11. Nouri Hajbaba, M., Pourmadadi, M., Yazdian, F., Rashedi, H., Abdouss, M., & Zhohrabi, D. S. (2022). The function of chitosan/agarose biopolymer on Fe2 O3 nanoparticles and evaluation of their effects on MCF-7 breast cancer cell line and expression of BCL2 and BAX genes. Biotechnology Progress, 39, e3305. https://doi.org/10.1002/btpr.3305

    Article  Google Scholar 

  12. Abdouss, H., Pourmadadi, M., Zahedi, P., Abdouss, M., Yazdian, F., Rahdar, A., & Díez-Pascual, A. M. (2023). Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. International Journal of Biological Macromolecules, 242, 125134. https://doi.org/10.1016/j.ijbiomac.2023.125134

    Article  Google Scholar 

  13. Piña Olmos, S., et al. (2019). Combinatorial use of chitosan nanoparticles, reversine, and ionising radiation on breast cancer cells associated with mitosis deregulation. Biomolecules, 9, 186. https://doi.org/10.3390/biom9050186

    Article  Google Scholar 

  14. DeSantis, C. E., et al. (2019). Breast cancer statistics, 2019. CA: a Cancer Journal for Clinicians, 69, 438–451. https://doi.org/10.3322/caac.21583

    Article  Google Scholar 

  15. Kasturi, S., et al. (2021). Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. Journal of Industrial and Engineering Chemistry, 93, 186–195.

    Article  Google Scholar 

  16. Chuquicusma, M. J. M., Hussein, S., Burt, J. & Bagci, U. How to fool radiologists with generative adversarial networks? A visual Turing test for lung cancer diagnosis, 2017.

  17. Hallam, E. (2023). Radiotherapy. In J. J. Harding (Ed.), Care of Head and Neck Cancer Patients for Dental Hygienists and Dental Therapists (pp. 239–240). Wiley.

    Chapter  Google Scholar 

  18. Gao, Q., et al. (2022). Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Advanced Drug Delivery Reviews, 188, 114445. https://doi.org/10.1016/j.addr.2022.114445

    Article  Google Scholar 

  19. Wu, Q., et al. (2018). Different antitumor effects of quercetin, quercetin-3'-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food & Function, 9, 1736–1746. https://doi.org/10.1039/c7fo01964e

    Article  Google Scholar 

  20. Patil, A., Narvenker, R., Prabhakar, B., & Shende, P. (2020). Strategic consideration for effective chemotherapeutic transportation via transpapillary route in breast cancer. International Journal of Pharmaceutics, 586, 119563. https://doi.org/10.1016/j.ijpharm.2020.119563

    Article  Google Scholar 

  21. Palanikumar, L., et al. (2020). pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Communications Biology, 3, 95. https://doi.org/10.1038/s42003-020-0817-4

    Article  Google Scholar 

  22. Yi, X., et al. (2022). A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Research, 15, 1205–1212. https://doi.org/10.1007/s12274-021-3626-2

    Article  Google Scholar 

  23. Appel, E. (2023). Side effects of chemotherapy and their management. Microreviews in Cell and Molecular biology, 4.

  24. Nitheesh, Y., et al. (2021). Surface engineered nanocarriers for the management of breast cancer. Materials Science & Engineering. C, Materials for Biological Applications, 130, 112441. https://doi.org/10.1016/j.msec.2021.112441

    Article  Google Scholar 

  25. Meropol, N. J., et al. (2009). American Society of Clinical Oncology guidance statement: The cost of cancer care. Journal of Clinical Oncology, 27, 3868–3874.

    Article  Google Scholar 

  26. Camerlingo, C., et al. (2018). Graphene-based Raman spectroscopy for pH sensing of X-rays exposed and unexposed culture media and cells. Sensors, 18, 2242. https://doi.org/10.3390/s18072242

    Article  Google Scholar 

  27. Makropoulou, M. Cancer and electromagnetic radiation therapy: Quo Vadis? https://arxiv.org/abs/1602.02077 (2016).

  28. Ezike, T. C., et al. (2023). Advances in drug delivery systems, challenges and future directions. Heliyon, 9, e17488. https://doi.org/10.1016/j.heliyon.2023.e17488

    Article  Google Scholar 

  29. Cukierman, E., & Khan, D. R. (2010). The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochemical Pharmacology, 80, 762–770. https://doi.org/10.1016/j.bcp.2010.04.020

    Article  Google Scholar 

  30. Li, C., et al. (2019). Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 9, 1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003

    Article  Google Scholar 

  31. Islam, W., Niidome, T., & Sawa, T. (2022). Enhanced permeability and retention effect as a ubiquitous and epoch-making phenomenon for the selective drug targeting of solid tumors. Journal of Personalized Medicine, 12, 1964. https://doi.org/10.3390/jpm12121964

    Article  Google Scholar 

  32. Aghebati-Maleki, A., et al. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology, 235, 1962–1972. https://doi.org/10.1002/jcp.29126

    Article  Google Scholar 

  33. Prakash, J., et al. (2021). In-vitro evaluation of electrospun cellulose acetate nanofiber containing graphene oxide/TiO2/curcumin for wound healing application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627, 127166.

    Article  Google Scholar 

  34. Maghsoudi, A., et al. (2017). Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Materials Science & Engineering. C, Materials for Biological Applications, 75, 1259–1267. https://doi.org/10.1016/j.msec.2017.03.032

    Article  Google Scholar 

  35. Conte, R., et al. (2019). Hydrogel nanocomposite systems. In Nanocarriers for Drug Delivery (pp. 319–349). Elsevier.

    Chapter  Google Scholar 

  36. Dannert, C., Stokke, B. T., & Dias, R. S. (2019). Nanoparticle-hydrogel composites: From molecular interactions to macroscopic behavior. Polymers, 11, 275. https://doi.org/10.3390/polym11020275

    Article  Google Scholar 

  37. Yadav, N., Dahiya, T., Chhillar, A. K., Rana, J. S., & Saini, H. M. (2022). Nanotechnology in cancer diagnostics and therapeutics: A review. Current Pharmaceutical Biotechnology, 23, 1556–1568. https://doi.org/10.2174/1389201023666211222165508

    Article  Google Scholar 

  38. Wang, T., Cao, C., Gavahi, M., Sadri, M., & Rongn, X. (2022). Using nanotechnology for diagnosis and treatment of breast cancer: A review. Indian Journal of Pharmaceutical Sciences, 84, 237–245. https://doi.org/10.36468/pharmaceutical-sciences.spl.480

    Article  Google Scholar 

  39. Lu, H., et al. (2016). Recent progress on nanostructures for drug delivery applications. Journal of Nanomaterials, 2016, 5762431. https://doi.org/10.1155/2016/5762431

    Article  Google Scholar 

  40. Basilotta, R., et al. (2021). Role of calixarene in chemotherapy delivery strategies. Molecules (Basel, Switzerland), 26, 3963. https://doi.org/10.3390/molecules26133963

    Article  Google Scholar 

  41. Pourmadadi, M., et al. (2022). Role of Iron Oxide (Fe2O3) Nanocomposites in advanced biomedical applications: A state-of-the-art review. Nanomaterials (Basel, Switzerland), 12, 3873. https://doi.org/10.3390/nano12213873

    Article  Google Scholar 

  42. Patel, T., Zhou, J., Piepmeier, J. M., & Saltzman, W. M. (2012). Polymeric nanoparticles for drug delivery to the central nervous system. Advanced Drug Delivery Reviews, 64, 701–705. https://doi.org/10.1016/j.addr.2011.12.006

    Article  Google Scholar 

  43. Ochekpe, N. A., Olorunfemi, P. O., & Ngwuluka, N. C. (2009). Nanotechnology and drug delivery part 2: Nanostructures for drug delivery. Tropical Journal of Pharmaceutical Research, 8. https://doi.org/10.4314/tjpr.v8i3.44547

  44. Khoshraftar, A., et al. (2018). Fabrication and evaluation of nanofibrous polyhydroxybutyrate valerate scaffolds containing hydroxyapatite particles for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 67, 987–995. https://doi.org/10.1080/00914037.2017.1417283

    Article  Google Scholar 

  45. Papagiannopoulos, A., & Vlassi, E. (2019). Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocolloids, 87, 602–610. https://doi.org/10.1016/j.foodhyd.2018.08.054

    Article  Google Scholar 

  46. Prabhakar, C., & Krishna, K. B. (2011). A review on polymeric nanoparticles. Research Journal of Pharmacy and Technology, 4, 496–498.

    Google Scholar 

  47. Lôbo, G. C. N. B., et al. (2021). Nanocarriers used in drug delivery to enhance immune system in cancer therapy. Pharmaceutics, 13, 1167. https://doi.org/10.3390/pharmaceutics13081167

    Article  Google Scholar 

  48. Ganta, S., Devalapally, H., Shahiwala, A., & Amiji, M. (2008). A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release, 126, 187–204. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  Google Scholar 

  49. Meng, F., Zhong, Z., & Feijen, J. (2009). Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 10, 197–209. https://doi.org/10.1021/bm801127d

    Article  Google Scholar 

  50. Chan, A., Orme, R. P., Fricker, R. A., & Roach, P. (2013). Remote and local control of stimuli responsive materials for therapeutic applications. Advanced Drug Delivery Reviews, 65, 497–514. https://doi.org/10.1016/j.addr.2012.07.007

    Article  Google Scholar 

  51. . (2018). Nano-carriers for drug delivery. In Nanoscience and nanotechnology in drug. ELSEVIER, [Place of publication not identified].

  52. Luo, Y., et al. (2019). Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics, 11, 176. https://doi.org/10.3390/pharmaceutics11040176

    Article  Google Scholar 

  53. Mondal, N., Pal, T. K., & Ghosal, S. K. (2008). Development, physical characterization, micromeritics and in vitro release kinetics of letrozole loaded biodegradable nanoparticles. Die Pharmazie, 63, 361–365.

    Google Scholar 

  54. Dey, S. K., Mandal, B., Bhowmik, M., & Ghosh, L. K. (2009). Development and in vitro evaluation of letrozole loaded biodegradable nanoparticles for breast cancer therapy. Brazilian Journal of Pharmaceutical Sciences, 45, 585–591. https://doi.org/10.1590/S1984-82502009000300025

    Article  Google Scholar 

  55. Mondal, N., et al. (2010). Preparation, characterization, and biodistribution of letrozole loaded PLGA nanoparticles in Ehrlich ascites tumor bearing mice. International Journal of Pharmaceutics, 397, 194–200. https://doi.org/10.1016/j.ijpharm.2010.06.049

    Article  Google Scholar 

  56. Alemrayat, B., Elhissi, A., & Younes, H. M. (2019). Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Pharmaceutical Development and Technology, 24, 235–242. https://doi.org/10.1080/10837450.2018.1455698

    Article  Google Scholar 

  57. Priyadarsini, S., & Lahoti, S. R. (2022). Quality by design: Optimization of letrozole solid lipid nanoparticle for breast cancer. Indian Journal of Pharmaceutical Education and Research, 56, 1013–1024. https://doi.org/10.5530/ijper.56.4.182

    Article  Google Scholar 

  58. Rostami, N., & Davarnejad, R. (2022). Characterization of folic acid-functionalized PLA-PEG nanomicelle to deliver letrozole: A nanoinformatics study. IET Nanobiotechnology, 16, 103–114. https://doi.org/10.1049/nbt2.12073

    Article  Google Scholar 

  59. Khan, M. T., et al. (2022). PEGylated protamine letrozole nanoparticles: A promising strategy to combat human breast cancer via MCF-7 cell lines. BioMed Research International, 2022, 4438518. https://doi.org/10.1155/2022/4438518

    Article  Google Scholar 

  60. Kazemi, S., Sarabi, A. A., & Abdouss, M. (2016). Synthesis and characterization of magnetic molecularly imprinted polymer nanoparticles for controlled release of letrozole. Korean Journal of Chemical Engineering, 33, 3289–3297. https://doi.org/10.1007/s11814-016-0171-x

    Article  Google Scholar 

  61. Nguyen, T. L., Nguyen, T. H., Nguyen, C. K., & Nguyen, D. H. (2017). Redox and pH responsive poly (amidoamine) dendrimer-heparin conjugates via disulfide linkages for letrozole delivery. BioMed Research International, 2017, 8589212. https://doi.org/10.1155/2017/8589212

    Article  Google Scholar 

  62. Amoli-Diva, M., Asli, M. D., & Karimi, S. (2017). FeMn2O4 nanoparticles coated dual responsive temperature and pH-responsive polymer as a magnetic nano-carrier for controlled delivery of letrozole anti-cancer. Nanomedicine Journal, 4, 218–223.

    Google Scholar 

  63. Hooshyar, S. P., Mehrabian, R. Z., Panahi, H. A., Jouybari, M. H., & Jalilian, H. (2019). Synthesis and characterization of magnetized-PEGylated dendrimer anchored to thermosensitive polymer for letrozole drug delivery. Colloids and Surfaces. B, Biointerfaces, 176, 404–411. https://doi.org/10.1016/j.colsurfb.2019.01.014

    Article  Google Scholar 

  64. Ahmad, W., et al. (2022). Development and evaluation of polymeric nanogels to enhance solubility of letrozole. Polymer Bulletin, 80(4), 4085–4116. https://doi.org/10.1007/s00289-022-04248-5

    Article  Google Scholar 

  65. Trucillo, P. (2021). Drug carriers: Classification, administration, release profiles, and industrial approach. Processes, 9, 470. https://doi.org/10.3390/pr9030470

    Article  Google Scholar 

  66. Shi, Z., et al. (2020). Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Materials in Medicine, 1, 32–47. https://doi.org/10.1016/j.smaim.2020.05.002

    Article  Google Scholar 

  67. Karim, M., et al. (2019). Strontium sulfite: A new pH-responsive inorganic nanocarrier to deliver therapeutic siRNAs to cancer cells. Pharmaceutics, 11, 89. https://doi.org/10.3390/pharmaceutics11020089

    Article  Google Scholar 

  68. Shakiba, M., et al. (2023). Drug-loaded carbon nanotube incorporated in nanofibers: A multifunctional nanocomposite for smart chronic wound healing. ACS Applied Polymer Materials, 5, 5662–5675. https://doi.org/10.1021/acsapm.3c00965

    Article  Google Scholar 

  69. Kaushik, N., et al. (2022). Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. Journal of Nanobiotechnology, 20, 152. https://doi.org/10.1186/s12951-022-01364-2

    Article  Google Scholar 

  70. Li, W., et al. (2019). AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artificial Cells, Nanomedicine, and Biotechnology, 47, 4222–4233. https://doi.org/10.1080/21691401.2019.1687501

    Article  Google Scholar 

  71. Yan, L., et al. (2019). A safe-by-design strategy towards safer nanomaterials in nanomedicines. Advanced Materials, 31, 1805391. https://doi.org/10.1002/adma.201805391

    Article  Google Scholar 

  72. Nasirzadeh, K., Nazarian, S., Mohammad, S., & Hayat, G. (2016). Inorganic nanomaterials: A brief overview of the applications and developments in sensing and drug delivery. Journal of Applied Biotechnology Reports, 3(2), 395–402.

    Google Scholar 

  73. Pushpalatha, R., Selvamuthukumar, S., & Kilimozhi, D. (2017). Nanocarrier mediated combination drug delivery for chemotherapy – A review. Journal of Drug Delivery Science and Technology, 39, 362–371. https://doi.org/10.1016/j.jddst.2017.04.019

    Article  Google Scholar 

  74. Akbarzadeh, I., et al. (2022). Gingerol/letrozole-loaded mesoporous silica nanoparticles for breast cancer therapy: In-silico and in-vitro studies. Microporous and Mesoporous Materials, 337, 111919. https://doi.org/10.1016/j.micromeso.2022.111919

    Article  Google Scholar 

  75. Aldawsari, H. M., et al. (2021). Gum acacia functionalized colloidal gold nanoparticles of letrozole as biocompatible drug delivery carrier for treatment of breast cancer. Pharmaceutics, 13, 1554. https://doi.org/10.3390/pharmaceutics13101554

    Article  Google Scholar 

  76. Rauti, R., Musto, M., Bosi, S., Prato, M., & Ballerini, L. (2019). Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon, 143, 430–446. https://doi.org/10.1016/j.carbon.2018.11.026

    Article  Google Scholar 

  77. Mohajeri, M., Behnam, B., & Sahebkar, A. (2018). Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials. Journal of Cellular Physiology, 234, 298–319. https://doi.org/10.1002/jcp.26899

    Article  Google Scholar 

  78. Adorinni, S., Cringoli, M. C., Perathoner, S., Fornasiero, P., & Marchesan, S. (2021). Green approaches to carbon nanostructure-based biomaterials. Applied Sciences, 11, 2490. https://doi.org/10.3390/app11062490

    Article  Google Scholar 

  79. Lim, D.-J., Sim, M., Oh, L., Lim, K., & Park, H. (2014). Carbon-based drug delivery carriers for cancer therapy. Archives of Pharmacal Research, 37, 43–52. https://doi.org/10.1007/s12272-013-0277-1

    Article  Google Scholar 

  80. Bakhsheshi-Rad, H. R., et al. (2020). Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. International Journal of Biological Macromolecules, 149, 513–521.

    Article  Google Scholar 

  81. Liu, B., et al. (2012). Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchimica Acta, 178, 163–170.

    Article  Google Scholar 

  82. Nxele, S. R., & Nyokong, T. (2021). The electrochemical detection of prostate specific antigen on glassy carbon electrode modified with combinations of graphene quantum dots, cobalt phthalocyanine and an aptamer. Journal of Inorganic Biochemistry, 221, 111462.

    Article  Google Scholar 

  83. Zamani, M., Pourmadadi, M., Seyyed Ebrahimi, S. A., Yazdian, F., & Shabani Shayeh, J. (2022). A novel labeled and label-free dual electrochemical detection of endotoxin based on aptamer-conjugated magnetic reduced graphene oxide-gold nanocomposite. Journal of Electroanalytical Chemistry, 908, 116116. https://doi.org/10.1016/j.jelechem.2022.116116

    Article  Google Scholar 

  84. Kalajahi, S. T., et al. (2022). Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study. Environmental Science and Pollution Research International, 29, 49884–49897. https://doi.org/10.1007/s11356-022-19247-2

    Article  Google Scholar 

  85. Wang, S.-Y., Hu, H.-Z., Qing, X.-C., Zhang, Z.-C., & Shao, Z.-W. (2020). Recent advances of drug delivery nanocarriers in osteosarcoma treatment. Journal of Cancer, 11, 69–82. https://doi.org/10.7150/jca.36588

    Article  Google Scholar 

  86. Chen, Y.-C., et al. (2013). Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Science and Technology of Advanced Materials, 14, 44407. https://doi.org/10.1088/1468-6996/14/4/044407

    Article  Google Scholar 

  87. Shannahan, J. (2017). The biocorona: A challenge for the biomedical application of nanoparticles. Nanotechnology Reviews, 6, 345–353. https://doi.org/10.1515/ntrev-2016-0098

    Article  Google Scholar 

  88. Rahimi, M., Damavandi, S. G., Wadi, D., & Vadi, M. (2014). Investigation of Langmuir, Freundlich and Temkin isotherms adsorption of furosemide (diuretic drug) by multi-wall carbon nanotube. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5, 36–39.

    Google Scholar 

  89. Almuqrin, A. H., Al-Otaibi, J. S., Mary, Y. S., Mary, Y. S., & Thomas, R. (2021). Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. Journal of Biomolecular Structure & Dynamics, 39, 5509–5515. https://doi.org/10.1080/07391102.2020.1790420

    Article  Google Scholar 

  90. Karbakhshzadeh, A., et al. (2022). Study the adsorption of letrozole drug on the silicon doped graphdiyne monolayer: A DFT investigation. Silicon, 14, 3615–3622. https://doi.org/10.1007/s12633-021-01143-y

    Article  Google Scholar 

  91. Seyedmousavi, M., Rouhani, M., & Mirjafary, Z. (2022). B(OH) 2-functionalized graphene nanoflakes as a promising nanocarrier for letrozole delivery: A density functional theory study. Journal of Physics D: Applied Physics, 55, 115401. https://doi.org/10.1088/1361-6463/ac39c6

    Article  Google Scholar 

  92. Niu, Z., Conejos-Sánchez, I., Griffin, B. T., O’Driscoll, C. M., & Alonso, M. J. (2016). Lipid-based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 106, 337–354. https://doi.org/10.1016/j.addr.2016.04.001

    Article  Google Scholar 

  93. Shukla, T., Upmanyu, N., Prakash Pandey, S., & Gosh, D. (2018). Lipid nanocarriers. In Lipid Nanocarriers for Drug Targeting (pp. 1–47). Elsevier.

    Google Scholar 

  94. Plaza-Oliver, M., Santander-Ortega, M. J., & Lozano, M. V. (2021). Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Delivery and Translational Research, 11, 471–497. https://doi.org/10.1007/s13346-021-00908-7

    Article  Google Scholar 

  95. Abdulbaqi, I. M., et al. (2021). Pulmonary delivery of anticancer drugs via lipid-based nanocarriers for the treatment of lung cancer: An update. Pharmaceuticals, 14, 725. https://doi.org/10.3390/ph14080725

    Article  Google Scholar 

  96. Zoabi, A., Touitou, E., & Margulis, K. (2021). Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces, 5, 18. https://doi.org/10.3390/colloids5010018

    Article  Google Scholar 

  97. Di, J., et al. (2021). Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian Journal of Pharmaceutical Sciences, 16, 444–458. https://doi.org/10.1016/j.ajps.2020.07.005

    Article  Google Scholar 

  98. Sakellari, G. I., Zafeiri, I., Batchelor, H., & Spyropoulos, F. (2021). Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocolloids for Health, 1, 100024. https://doi.org/10.1016/j.fhfh.2021.100024

    Article  Google Scholar 

  99. Patel, D., Patel, B., & Thakkar, H. (2021). Lipid based nanocarriers: Promising drug delivery system for topical application. European Journal of Lipid Science and Technology, 123, 2000264. https://doi.org/10.1002/ejlt.202000264

    Article  Google Scholar 

  100. Witika, B. A., Bassey, K. E., Demana, P. H., Siwe-Noundou, X., & Poka, M. S. (2022). Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. International Journal of Molecular Sciences, 23, 9668. https://doi.org/10.3390/ijms23179668

    Article  Google Scholar 

  101. Chauhan, N., et al. (2022). Ethosomes: A novel drug carrier. Annals of Medicine and Surgery, 82, 104595. https://doi.org/10.1016/j.amsu.2022.104595

    Article  Google Scholar 

  102. Nastiti, C., et al. (2017). Topical nano and microemulsions for skin delivery. Pharmaceutics, 9, 37. https://doi.org/10.3390/pharmaceutics9040037

    Article  Google Scholar 

  103. Yassemi, A., Kashanian, S., & Zhaleh, H. (2020). Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharmaceutical Development and Technology, 25, 397–407. https://doi.org/10.1080/10837450.2019.1703739

    Article  Google Scholar 

  104. Mandadi, S. R., & Srinivas, L. (2022). Development of solid lipid nanoparticles with letrozole for breast cancer treatment: In-vitro and in-vivo evaluation. Journal of Pharmaceutical Negative Results, 13, 1159–1166. https://doi.org/10.47750/pnr.2022.13.S01.142

    Article  Google Scholar 

  105. Ahmadifard, Z., Ahmeda, A., Rasekhian, M., Moradi, S., & Arkan, E. (2020). Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole. Journal of Drug Delivery Science and Technology, 57, 101621. https://doi.org/10.1016/j.jddst.2020.101621

    Article  Google Scholar 

  106. Sabzichi, M., Mohammadian, J., Khosroushahi, A. Y., Bazzaz, R., & Hamishehkar, H. (2016). Folate-targeted nanostructured lipid carriers (NLCs) enhance (letrozole) efficacy in MCF-7 breast cancer cells. Asian Pacific Journal of Cancer Prevention, 17, 5185–5188. https://doi.org/10.22034/APJCP.2016.17.12.5185

    Article  Google Scholar 

  107. Tarik Alhamdany, A., Saeed, A. M., & Alaayedi, M. (2021). Nanoemulsion and solid nanoemulsion for improving oral delivery of a breast cancer drug: Formulation, evaluation, and a comparison study. Saudi Pharmaceutical Journal, 29, 1278–1288. https://doi.org/10.1016/j.jsps.2021.09.016

    Article  Google Scholar 

  108. Elzoghby, A. O., Mostafa, S. K., Helmy, M. W., ElDemellawy, M. A., & Sheweita, S. A. (2017). Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharmaceutical Research, 34, 1956–1969. https://doi.org/10.1007/s11095-017-2207-2

    Article  Google Scholar 

  109. Vu, M. T., Le, N. T. T., Pham, T. L.-B., Nguyen, N. H., & Nguyen, D. H. (2020). Development and characterization of soy lecithin liposome as potential drug carrier systems for codelivery of letrozole and paclitaxel. Journal of Nanomaterials, 2020, 8896455. https://doi.org/10.1155/2020/8896455

    Article  Google Scholar 

  110. Maniyar, M., Chakraborty, A., & Kokare, C. (2020). Formulation and evaluation of letrozole-loaded spray dried liposomes with PEs for topical application. Journal of Liposome Research, 30, 274–284. https://doi.org/10.1080/08982104.2019.1634723

    Article  Google Scholar 

  111. Ahmadi, S., et al. (2022). In vitro development of controlled-release nanoniosomes for improved delivery and anticancer activity of letrozole for breast cancer treatment. International Journal of Nanomedicine, 17, 6233–6255. https://doi.org/10.2147/IJN.S384085

    Article  Google Scholar 

  112. Bourbour, M., et al. (2022). Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells. Molecular Systems Design & Engineering, 7, 1102–1118. https://doi.org/10.1039/D2ME00024E

    Article  Google Scholar 

  113. Jamshidifar, E., et al. (2021). Super magnetic niosomal nanocarrier as a new approach for treatment of breast cancer: A case study on SK-BR-3 and MDA-MB-231 cell lines. International Journal of Molecular Sciences, 22, 7948. https://doi.org/10.3390/ijms22157948

    Article  Google Scholar 

  114. Sahrayi, H., et al. (2021). Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: Synergic effect, augmentation of cytotoxicity, and apoptosis gene expression. Pharmaceuticals (Basel, Switzerland), 15, 6. https://doi.org/10.3390/ph15010006

    Article  Google Scholar 

  115. Mekkawy, A. I., Eleraky, N. E., Soliman, G. M., Elnaggar, M. G., & Elnaggar, M. G. (2022). Combinatorial therapy of letrozole- and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells. Pharmaceutics, 14, 1727. https://doi.org/10.3390/pharmaceutics14081727

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MP and AR conceptualized and designed the study. SMH, SP, HA, and FST contributed in the writing, review, and editing of the manuscript. MA and SG experimented and gathered data and prepared the text, figures, and table. The manuscript was reviewed and approved for submission by all the authors.

Corresponding authors

Correspondence to Majid Abdouss, Abbas Rahdar or Suresh Ghotekar.

Ethics declarations

Ethical Approval

Not applicable

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmadadi, M., Hosseini, S.M., Parvaneh, S. et al. Letrozole-Loaded Nano-formulations as a Drug Delivery System for Cancer Therapy: Recent Developments. BioNanoSci. 13, 1593–1608 (2023). https://doi.org/10.1007/s12668-023-01196-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01196-w

Keywords

Navigation