Skip to main content

Advertisement

Log in

Population Pharmacokinetics of Sertraline in Healthy Subjects: a Model-Based Meta-analysis

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Sertraline pharmacokinetics is poorly understood and highly variable due to large between-subject variability with inconsistent reports for oral bioavailability. The study objective was to characterize sertraline pharmacokinetics by developing and validating a sertraline population pharmacokinetic (PK) model in healthy subjects using published clinical PK data. We carried a systematic literature search in PubMed in October 2015 and identified 27 pharmacokinetic studies of sertraline conducted in healthy adult subjects and reported in the English language. Sixty mean plasma concentration-time profiles made of 748 plasma concentrations following IV, single, and multiple oral doses ranging from 5 to 400 mg were extracted and analyzed for dose proportionality by a log-linear model and fitted to a 2-compartment pharmacokinetic model in NONMEM using a model-based meta-analysis (MBMA) approach. After a single oral dose, sertraline Cmax and AUC increased with dose proportionally between 50 and 200 mg, and bioavailability increased nonlinearly with dose from 5 to 50 mg and plateaued afterwards while Tmax and t1/2 did not change with dose. Following multiple oral doses, Cmax and AUC increased proportionally with dose across the entire dose range (5–200 mg) while bioavailability, Tmax, and t1/2 remained constant with dose. Sertraline absorption was time-dependent and best described by a sigmoidal Emax function of time after dose. Study findings indicate that sertraline PK is linear in healthy adult subjects at doses ≥ 50 mg, and exposures were nonlinear only after single oral doses < 50 mg likely due to reduced bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeVane CL, Liston HL, Markowitz JS. Clinical pharmacokinetics of sertraline. Clin Pharmacokinet. 2002;41(15):1247–66. Available from:. https://doi.org/10.2165/00003088-200241150-00002.

    Article  CAS  PubMed  Google Scholar 

  2. Chan H-L, Chiu W-C, Chen VC-H, Huang K-Y, Wang T-N, Lee Y, et al. SSRIs associated with decreased risk of hepatocellular carcinoma: a population-based case-control study. Psychooncology. 2017:1–6. Available from:. https://doi.org/10.1002/pon.4493.

  3. Rhein J, Morawski BM, Hullsiek KH, Nabeta HW, Kiggundu R, Tugume L, et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect Dis. 2016 [cited 2016 Mar 30];16(7):809–18. Available from: https://doi.org/10.1016/S1473-3099(16)00074-8

  4. Zoloft(R). Prescribing information [Internet]. New York, NY: Pfizer; 2017. Available from: http://labeling.pfizer.com/ShowLabeling.aspx?id=517#page=1. Accessed 18 Feb 2020

  5. Sternbach H. Danger of MAOI therapy after fluoxetine withdrawal. Lancet. 1988 [cited 2019 Feb 19];2(8615):850–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2902292. Accessed 18 Feb 2020

  6. DeVane CL. Pharmacokinetics of the newer antidepressants: clinical relevance. Am J Med. 1994 [cited 2020 Feb 18];97(6A):S13–23. Available from: https://linkinghub.elsevier.com/retrieve/pii/000293439490359X. Accessed 18 Feb 2020

  7. Nierenberg DW, Semprebon M. The central nervous system serotonin syndrome. Clin Pharmacol Ther. 1993 1 [cited 2019 Feb 19];53(1):84–8. Available from: https://doi.org/10.1038/clpt.1993.12

  8. Lau GT, Horowitz BZ, Horowitz Z. Sertraline overdose. Acad Emerg Med. 1996 [cited 2017 Aug 6];3(2):132–6. Available from: https://doi.org/10.1111/j.1553-2712.1996.tb03400.x

  9. Cooper JM, Duffull SB, Saiao AS, Isbister GK. The pharmacokinetics of sertraline in overdose and the effect of activated charcoal. Br J Clin Pharmacol [Internet]. 2015 [cited 2015 Apr 21];79(2):307–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25155462.

  10. Saletu B, Grünberger J, Linzmayer L. On central effects of serotonin re-uptake inhibitors: quantitative EEG and psychometric studies with sertraline and zimelidine. J Neural Transm. 1986;67(3–4):241–66. Available from:. https://doi.org/10.1007/BF01243351%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/2949057.

    Article  CAS  PubMed  Google Scholar 

  11. Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome p450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005;33(2):262–70.

    Article  CAS  Google Scholar 

  12. Ronfeld RA, Wilner KD, Baris BA. Chronopharmacokinetics and the effect of coadministration with food. Clin Pharmacokinet. 1997;32(Suppl):50–5.

    Article  CAS  Google Scholar 

  13. Gupta RN, Dziurdzy SA. Therapeutic monitoring of sertraline [5]. Clin Chem. 1994;40:498–9.

    Article  CAS  Google Scholar 

  14. Démolis JL, Angebaud P, Grangé JD, Coates P, Funck-Brentano C, Jaillon P. Influence of liver cirrhosis on sertraline pharmacokinetics. Br J Clin Pharmacol. 1996;42(3):394–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8877033.

    Article  Google Scholar 

  15. Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001 [cited 2014 Sep 14];70(1):42–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11452243. Accessed 14 Sep 2014

  16. Ronfeld RA, Tremaine LM, Wilner KD. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet. 1997;32 Suppl 1(Supplement 1):22–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9068932.

    Article  CAS  Google Scholar 

  17. Yuce-Artun N, Baskak B, Ozel-Kizil ET, Ozdemir H, Uckun Z, Devrimci-Ozguven H, et al. Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients. Int J Clin Pharm. 2016;38(2):388–94.

    Article  CAS  Google Scholar 

  18. Saiz-Rodríguez M, Belmonte C, Román M, Ochoa D, Koller D, Talegón M, et al. Effect of polymorphisms on the pharmacokinetics, pharmacodynamics and safety of sertraline in healthy volunteers. Basic Clin Pharmacol Toxicol. 2018 [cited 2020 Mar 5];122(5):501–11. Available from: https://doi.org/10.1111/bcpt.12938

  19. Ayaz M, Subhan F, Ahmed J, Khan A-U, Ullah F, Ullah I, et al. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J Biol Res (Thessalon). 2015 [cited 2017 Sep 21];22(1):4. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4449573&tool=pmcentrez&rendertype=abstract

  20. Lin C-JJ, Robert F, Sukarieh R, Michnick S, Pelletier J. The antidepressant sertraline inhibits translation initiation by curtailing mammalian target of rapamycin signaling. Cancer Res [Internet]. 2010 [cited 2014 Dec 16];70(8):3199–208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20354178. Accessed 15 Dec 2014

  21. Whellan DJ, Ellis SJ, Kraus WE, Hawthorne K, Piña IL, Keteyian SJ, et al. In vitro novel combinations of psychotropics and anti-cancer modalities in U87 human glioblastoma cells. Ann Intern Med. 2009;151(6):414–20.

    Article  Google Scholar 

  22. Gil-ad I, Zolokov A, Lomnitski L, Taler M, Bar M, Luria D, et al. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int J Oncol. 2008 [cited 2020 Feb 18];33(2):277–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18636148. Accessed 18 Feb 2020

  23. Reddy KK, Lefkove B, Chen LB, Govindarajan B, Carracedo A, Velasco G, et al. The antidepressant sertraline downregulates Akt and has activity against melanoma cells. Pigment Cell Melanoma Res. 2008;21(4):451–6.

    Article  CAS  Google Scholar 

  24. Drinberg V, Bitcover R, Rajchenbach W, Peer D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett. 2014 [cited 2015 Mar 24];354(2):290–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25173796. Accessed 24 Mar 2014

  25. Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst Pharmacol. 2013 [cited 2017 Jul 5];2(6):e50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23836189. Accessed 5 Jul 2015

  26. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN) - a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004 [cited 2019 Jan 24];75(2):85–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15212851. Accessed 24 Jan 2019

  27. Roerig JL, Steffen K, Zimmerman C, Mitchell JE, Crosby RD, Cao L. Preliminary comparison of sertraline levels in postbariatric surgery patients versus matched nonsurgical cohort. Surg Obes Relat Dis. 2012;8(1):62–6 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1550728910008063.

    Article  Google Scholar 

  28. Sertraline pharmacokinetics and dynamics in adolescents. J Am Acad Child Adolesc Psychiatry. 2002 [cited 2020 Feb 18];41(9):1037–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12218424. Accessed 18 Feb 2020

  29. Weiss J, Dormann S-MG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003 [cited 2017 Aug 21];305(1):197–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12649369. Accessed 21 Aug 2017

  30. Wang J-S, Zhu H-J, Gibson BB, Markowitz JS, Donovan JL, DeVane CL. Sertraline and its metabolite desmethylsertraline, but not bupropion or its three major metabolites, have high affinity for P-glycoprotein. Biol Pharm Bull. 2008 [cited 2017 Aug 21];31(2):231–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18239278. Accessed 21 Aug 2017

  31. Kapoor A, Iqbal M, Petropoulos S, Ho HL, Gibb W, Matthews SG. Effects of sertraline and fluoxetine on P-glycoprotein at barrier sites: in vivo and in vitro approaches. Baudry M, editor. PLoS One. 2013 [cited 2017 Aug 21];8(2):3–8. Available from: https://doi.org/10.1371/journal.pone.0056525

  32. Peters SA. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin Pharmacokinet. 2008 [cited 2017 Sep 4];47(4):245–59. Available from: https://doi.org/10.2165/00003088-200847040-00003

  33. Greenblatt DJ, Von Moltke LL, Harmatz JS, Shader RI. Human cytochromes mediating sertraline biotransformation: seeking attribution. J Clin Psychopharmacol. 1999 [cited 2019 Mar 31];19(6):489–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10587282. Accessed 31 March 2019

  34. Li CH, Pollock BG, Lyketsos CG, Vaidya V, Drye LT, Kirshner M, et al. Population pharmacokinetic modeling of sertraline treatment in patients with Alzheimer disease: the DIADS-2 Study. J Clin Pharmacol. 2012;XX.

  35. Sutton SC. The use of gastrointestinal intubation studies for controlled release development. Br J Clin Pharmacol. 2009 [cited 2017 Sep 4];68(3):342–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19740391. Accessed 4 Sep 2019

  36. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007 [cited 2017 Aug 21];34(5):711–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17653836. Accessed 21 Aug 2017

  37. Walker E, Hernandez AV, Kattan MW. Meta-analysis: its strengths and limitations. Clev Clin J Med. Cleveland Clinic Educational Foundation. 2008;75:431–9.

    Article  Google Scholar 

  38. Boucher M, Bennetts M. Many flavors of model-based meta-analysis: part II - modeling summary level longitudinal responses. CPT Pharmacometrics Syst Pharmacol. 2018 [cited 2018 Nov 26];7(5):288–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29569841. Accessed 26 Nov 2017

  39. Boucher M, Bennetts M. The many flavors of model-based meta-analysis: part I - introduction and landmark data. CPT Pharmacometrics Syst Pharmacol. 2016 [cited 2018 Nov 26];5(2):54–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26933516. Accessed 26 Nov 2017

  40. Park MK, Shin KH, Kim KP, Kim TE, Yoon SH, Cho JY, et al. Open label, three period, single sequence, study of 5, 25, 50 mg sertraline pharmacokinetics in healthy male Korean volunteers. Int J Clin Pharmacol Ther. 2011;49(11):672–8.

    Article  CAS  Google Scholar 

  41. Shin KH, Kim KP, Lim KS, Kim JW, Lee YS, Yang BY, et al. A positron emission tomography microdosing study with sertraline in healthy volunteers. Int J Clin Pharmacol Ther. 2012;50(3):224–32.

    Article  CAS  Google Scholar 

  42. Alhadab AA, Brundage RC. Physiologically-based pharmacokinetic model of sertraline in human to predict clinical relevance of concentrations at target tissues. Clin Pharmacol Ther. 2020 [cited 2020 Mar 11];cpt.1824. Available from: https://doi.org/10.1002/cpt.1824

  43. Warrington SJ. Clinical implications of the pharmacology of sertraline. Int Clin Psychopharmacol. 1991 [cited 2015 Apr 21];6 Suppl 2:11–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1806626.

  44. Moraes MOE, Lerner FE, Perozin M, Moraes MOE, Frota Bezerra FA, Sucupira M, et al. Comparative bioavailability of two sertraline tablet formulations in healthy human volunteers after a single dose administration. Int J Clin Pharmacol Ther. 1998 [cited 2015 Dec 29];36(12):661–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9877003. Accessed 29 Dec 2015

  45. Allard S, Sainati SM, Roth-Schechter BF. Coadministration of short-term zolpidem with sertraline in healthy women. J Clin Pharmacol. 1999 [cited 2015 Dec 31];39(2):184–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11563412. Accessed 29 Dec 2015

  46. Zhu CJ, Wu JF, Qu ZW, Chen LM, Zhang JT, Zhang, JT, Zhu CJ, et al. Bioequivalence evaluation of two sertraline tablet formulations in healthy male volunteers after a single dose administration. Int J Clin Pharmacol Ther. 1999 [cited 2015 Dec 29];37(3):120–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10190759. Accessed 29 Dec 2015

  47. Kim KM, Jung BH, Choi MH, Woo JS, Paeng K-J, Chung BC. Rapid and sensitive determination of sertraline in human plasma using gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed life Sci. 2002;769(2):333–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16233994.

  48. Nagy CF, Kumar D, Perdomo CA, Wason S, Cullen EI, Pratt RD. Concurrent administration of donepezil HCl and sertraline HCl in healthy volunteers: assessment of pharmacokinetic changes and safety following single and multiple oral doses. Br J Clin Pharmacol Suppl. 2004 [cited 2020 Feb 18];58(1):25–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15496220. Accessed 18 Feb 2020

  49. Koytchev R, Ozalp Y, Erenmemisoglu A, van der Meer MJ, Alpan RS. Serotonin reuptake inhibitors: bioequivalence of sertraline capsules. Arzneimittelforschung. 2004 [cited 2015 Dec 29];54(9A):629–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15497672. Accessed 29 Ded 2015

  50. Almeida S, Portolés A, Terleira A, Filipe A, Cea E, Caturla MC. Comparative bioavailability/bioequivalence of two different sertraline formulations: a randomised, 2-period x 2-sequence, crossover clinical trial in healthy volunteers. Arzneimittelforschung. 2005 [cited 2015 Dec 29];55(4):191–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15901041. Accessed 29 Dec 2015

  51. He L, Feng F, Wu J. Determination of sertraline in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry and method validation. J Chromatogr Sci. 2005;43(December):532–5.

    Article  CAS  Google Scholar 

  52. Chen X, Duan X, Dai X, Zhong D. Development and validation of a liquid chromatographic/tandem mass spectrometric method for the determination of sertraline in human plasma. Rapid Commun Mass Spectrom [Internet]. 2006 [cited 2016 Jan 1];20(16):2483–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16862624. Accessed 29 Dec 2015

  53. Tassaneeyakul W, Kanchanawat S, Gaysonsiri D, Vannaprasath S, Paupairoj P, Kittiwattanagul K, et al. Comparative bioavailability of two sertraline tablet formulations after single-dose administration in healthy Thai volunteers. Int J Clin Pharmacol Ther. 2008 [cited 2015 Dec 31];46(3):151–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18397687. Accessed 29 Dec 2015

  54. Farshchi A, Ghiasi G, Bahrami G. High performance liquid chromatography determination of sertraline in human. Iran J Pharm Sci. 2009;5(3):171–8.

    CAS  Google Scholar 

  55. Niyomnaitham S, Chatsiricharoenkul S, Sathirakul K, Pongnarin P, Kongpatanakul S. Bioequivalence study of 50 mg sertraline tablets in healthy Thai volunteers. J Med Assoc Thail. 2009 [cited 2020 Feb 18];92(9):1229–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19772184.

  56. Patel BN, Sharma N, Sanyal M, Shrivastav PS. Analysis of second-generation antidepressant drug, sertraline and its active metabolite, N-desmethyl sertraline in human plasma by a sensitive and selective liquid chromatography-tandem mass spectrometry method. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877(3):221–9.

    Article  CAS  Google Scholar 

  57. Kang H-A, Cho H-Y, Young-Bok L. Bioequivalence of traline tablet to Zoloft tablet (sertraline HCl 50 mg). J Pharm Investig. 2011;41(5):317–22.

    Article  CAS  Google Scholar 

  58. Zhang M, Gao F, Cui X, Zhang Y, Sun Y, Gu J. Development and validation of an improved method for the quantitation of sertraline in human plasma using LC-MS-MS and its application to bioequivalence studies. J Chromatogr Sci. 2011;49(2):89–93.

    Article  Google Scholar 

  59. Ruderman EBW. Effects of acute aerobic exercise on the pharmacokinetics of the anti-anxiety/anti-depressant [Internet]. University of Toronto; 2013 [cited 2020 Feb 18]. Available from: https://tspace.library.utoronto.ca/handle/1807/43322. Accessed 18 Feb 2020

  60. Yue X-H, Wang Z, Tian D-D, Zhang J-W, Zhu K, Ye Q. Determination of sertraline in human plasma by UPLC–MS/MS and its application to a pharmacokinetic study. J Chromatogr Sci. 2015:bmv128. Available from:. https://doi.org/10.1093/chromsci/bmv128.

  61. Sutton SC. Role of physiological intestinal water in oral absorption. AAPS J. 2009;11(2):277–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Coin Foundation Fellowship supports graduate students in Experimental and Clinical Pharmacology at University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alhadab.

Ethics declarations

Conflict of Interest

Ali A. Alhadab is an employee of Pfizer and may hold Pfizer stock or stock options. Richard C. Brundage has no competing interest for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhadab, A.A., Brundage, R.C. Population Pharmacokinetics of Sertraline in Healthy Subjects: a Model-Based Meta-analysis. AAPS J 22, 73 (2020). https://doi.org/10.1208/s12248-020-00455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00455-y

KEY WORDS

Navigation