Skip to main content

Advertisement

Log in

TCPro: an In Silico Risk Assessment Tool for Biotherapeutic Protein Immunogenicity

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Most immune responses to biotherapeutic proteins involve the development of anti-drug antibodies (ADAs). New drugs must undergo immunogenicity assessments to identify potential risks at early stages in the drug development process. This immune response is T cell-dependent. Ex vivo assays that monitor T cell proliferation often are used to assess immunogenicity risk. Such assays can be expensive and time-consuming to carry out. Furthermore, T cell proliferation requires presentation of the immunogenic epitope by major histocompatibility complex class II (MHCII) proteins on antigen-presenting cells. The MHC proteins are the most diverse in the human genome. Thus, obtaining cells from subjects that reflect the distribution of the different MHCII proteins in the human population can be challenging. The allelic frequencies of MHCII proteins differ among subpopulations, and understanding the potential immunogenicity risks would thus require generation of datasets for specific subpopulations involving complex subject recruitment. We developed TCPro, a computational tool that predicts the temporal dynamics of T cell counts in common ex vivo assays for drug immunogenicity. Using TCPro, we can test virtual pools of subjects based on MHCII frequencies and estimate immunogenicity risks for different populations. It also provides rapid and inexpensive initial screens for new biotherapeutics and can be used to determine the potential immunogenicity risk of new sequences introduced while bioengineering proteins. We validated TCPro using an experimental immunogenicity dataset, making predictions on the population-based immunogenicity risk of 15 protein-based biotherapeutics. Immunogenicity rankings generated using TCPro are consistent with the reported clinical experience with these therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joubert MK, Deshpande M, Yang J, Reynolds H, Bryson C, Fogg M, et al.. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS One. 2016;11(8):e0159328.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ridker PM, Tardif J-C, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al.. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  PubMed  Google Scholar 

  3. Mahlangu J, Weldingh K, Lentz S, Kaicker S, Karim F, Matsushita T, et al. Changes in the amino acid sequence of the recombinant human factor VIIa analog, vatreptacog alfa, are associated with clinical immunogenicity. J Thromb Haemost. 2015;13(11):1989–98.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y-MC, Wang J, Hon YY, Zhou L, Fang L, Ahn HY. Evaluating and reporting the immunogenicity impacts for biological products—a clinical pharmacology perspective. AAPS J. 2016;18(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  5. Svenningsson A, Dring AM, Fogdell-Hahn A, Jones I, Engdahl E, Lundkvist M, et al. Fatal neuroinflammation in a case of multiple sclerosis with anti-natalizumab antibodies. Neurology. 2013;80(10):965–7.

    Article  PubMed  Google Scholar 

  6. DeFrancesco L. Three deaths sink Affymax: Nature Publishing Group; 2013.

  7. Vultaggio A, Matucci A, Nencini F, Pratesi S, Parronchi P, Rossi O, et al. Anti-infliximab IgE and non-IgE antibodies and induction of infusion-related severe anaphylactic reactions. Allergy. 2010;65(5):657–61.

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava A, Brewer A, Mauser-Bunschoten E, Key N, Kitchen S, Llinas A, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19(1):e1–e47.

    Article  CAS  PubMed  Google Scholar 

  9. Hoffman M, Dargaud Y. Mechanisms and monitoring of bypassing agent therapy. J Thromb Haemost. 2012;10(8):1478–85.

    Article  CAS  PubMed  Google Scholar 

  10. D'arcy CA, Mannik M. Serum sickness secondary to treatment with the murine–human chimeric antibody IDEC-C2B8 (rituximab). Arthritis Rheum. 2001;44(7):1717–8.

    Article  CAS  PubMed  Google Scholar 

  11. D'Angiolella L, Cortesi P, Rocino A, Coppola A, Hassan H, Giampaolo A, et al. The socio-economic burden of patients affected by hemophilia with inhibitors. Eur J Haematol. 2018;101:435–56.

    Article  PubMed  Google Scholar 

  12. Mahlangu J, Paz P, Hardtke M, Aswad F, Schroeder J. TRUST trial: BAY 86-6150 use in haemophilia with inhibitors and assessment for immunogenicity. Haemophilia. 2016;22(6):873–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kotarek J, Stuart C, De Paoli SH, Simak J, Lin T-L, Gao Y, et al. Subvisible particle content, formulation, and dose of an erythropoietin peptide mimetic product are associated with severe adverse postmarketing events. J Pharm Sci. 2016;105(3):1023–7.

    Article  CAS  PubMed  Google Scholar 

  14. Lamberth K, Weldingh KN, Ehrenforth S, Chéhadé MR, Østergaard H. Immunogenicity lessons learned from the clinical development of vatreptacog alfa, a recombinant activated factor VII analog, in Hemophilia with inhibitors. Protein Therapeutics: Springer; 2017. p. 123–60.

    Google Scholar 

  15. Shankar G, Pendley C, Stein KE. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nat Biotechnol. 2007;25(5):555–61.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberg AS, Sauna ZE. Immunogenicity assessment during the development of protein therapeutics. J Pharm Pharmacol. 2017.

  17. Bachelet D, Hässler S, Mbogning C, Link J, Ryner M, Ramanujam R, et al. Occurrence of anti-drug antibodies against interferon-beta and natalizumab in multiple sclerosis: a collaborative cohort analysis. PLoS One. 2016;11(11):e0162752.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol. 2010;137(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  19. Schultz HS, Reedtz-Runge SL, Bäckström BT, Lamberth K, Pedersen CR, Kvarnhammar AM. Quantitative analysis of the CD4+ T cell response to therapeutic antibodies in healthy donors using a novel T cell: PBMC assay. PLoS One. 2017;12(5):e0178544.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zubler RH, editor Naive and memory B cells in T-cell-dependent and T-independent responses. Springer seminars in immunopathology. Springer; 2001.

  21. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  22. Baker M, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self/nonself. 2010;1(4):314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol. 2018;1.

  24. Robinson J, Waller MJ, Parham P, Groot ND, Bontrop R, Kennedy LJ, et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003;31(1):311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018.

  26. Baker MP, Jones TD. Identification and removal of immunogenicity in therapeutic proteins. Curr Opin Drug Discov Dev. 2007;10(2):219–27.

    CAS  Google Scholar 

  27. Gourraud P-A, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M, et al. HLA diversity in the 1000 genomes dataset. PLoS One. 2014;9(7):e97282.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karle A, Spindeldreher S, Kolbinger F, editors. Secukinumab, a novel anti–IL-17A antibody, shows low immunogenicity potential in human in vitro assays comparable to other marketed biotherapeutics with low clinical immunogenicity. MAbs. Taylor & Francis; 2016.

  29. Ritter G, Cohen LS, Williams C, Richards EC, Old LJ, Welt S. Serological analysis of human anti-human antibody responses in colon cancer patients treated with repeated doses of humanized monoclonal antibody A33. Cancer Res. 2001;61(18):6851–9.

    CAS  PubMed  Google Scholar 

  30. Welt S, Ritter G, Williams C, Cohen LS, Jungbluth A, Richards EA, et al. Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer. Clin Cancer Res. 2003;9(4):1347–53.

    CAS  PubMed  Google Scholar 

  31. Scott AM, Lee F-T, Jones R, Hopkins W, MacGregor D, Cebon JS, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11(13):4810–7.

    Article  CAS  PubMed  Google Scholar 

  32. Delluc S, Ravot G, Maillere B. Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors. FASEB J. 2011;25(6):2040–8.

    Article  CAS  PubMed  Google Scholar 

  33. Gordon M, Margolin K, Talpaz M, Sledge G Jr, Holmgren E, Benjamin R, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19(3):843–50.

    Article  CAS  PubMed  Google Scholar 

  34. Tajima N, Martinez A, Kobayashi F, He L, Dewland P. A phase 1 study comparing the proposed biosimilar BS-503a with bevacizumab in healthy male volunteers. Pharmacol Res Perspect. 2017;5(2).

    Article  Google Scholar 

  35. Rubic-Schneider T, Kuwana M, Christen B, Aßenmacher M, Hainzl O, Zimmermann F, et al. T-cell assays confirm immunogenicity of tungsten-induced erythropoietin aggregates associated with pure red cell aplasia. 2017;1(6):367–79.

  36. Delluc S, Ravot G, Maillere B. Quantification of the pre-existing CD4 T cell repertoire specific for human erythropoietin reveals its immunogenicity potential. Blood. 2010:blood-2010-04-280875.

  37. Casadevall N, Dobronravov V, Eckardt K-U, Ertürk S, Martynyuk L, Schmitt S, et al. Evaluation of the safety and immunogenicity of subcutaneous HX575 epoetin alfa in the treatment of anemia associated with chronic kidney disease in predialysis and dialysis patients. Clin Nephrol. 2017;88(4):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shin S-K, Moon SJ, Ha SK, Jo Y-I, Lee T-W, Lee YS, et al. Immunogenicity of recombinant human erythropoietin in Korea: a two-year cross-sectional study. Biologicals. 2012;40(4):254–61.

    Article  CAS  PubMed  Google Scholar 

  39. Fineman M, Mace K, Diamant M, Darsow T, Cirincione B, Booker Porter T, et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes Metab. 2012;14(6):546–54.

    Article  CAS  PubMed  Google Scholar 

  40. Milicevic Z, Anglin G, Harper K, Konrad R, Skrivanek Z, Glaesner W, et al. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide. Diabetes Obes Metab. 2016;18(5):533–6.

    Article  CAS  PubMed  Google Scholar 

  41. Meunier S, Menier C, Marcon E, Lacroix-Desmazes S, Maillère B. CD4 T cells specific for factor VIII are present at high frequency in healthy donors and comprise naïve and memory cells. Blood Adv. 2017;1(21):1842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iorio A, Fischer K, Makris M. Large scale studies assessing anti-factor VIII antibody development in previously untreated haemophilia A: what has been learned, what to believe and how to learn more. Br J Haematol. 2017;178(1):20–31.

    Article  PubMed  Google Scholar 

  43. Ismael G, Hegg R, Muehlbauer S, Heinzmann D, Lum B, Kim S-B, et al. Subcutaneous versus intravenous administration of (neo) adjuvant trastuzumab in patients with HER2-positive, clinical stage I–III breast cancer (HannaH study): a phase 3, open-label, multicentre, randomised trial. Lancet Oncol. 2012;13(9):869–78.

    Article  CAS  PubMed  Google Scholar 

  44. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639.

    Article  CAS  PubMed  Google Scholar 

  45. Pivot X, Bondarenko I, Nowecki Z, Dvorkin M, Trishkina E, Ahn J-H, et al. Phase III, randomized, double-blind study comparing the efficacy, safety, and immunogenicity of SB3 (trastuzumab biosimilar) and reference trastuzumab in patients treated with neoadjuvant therapy for human epidermal growth factor receptor 2–positive early breast cancer. J Clin Oncol. 2018;36(10):968–74.

    Article  CAS  PubMed  Google Scholar 

  46. Spindeldreher S. Comparison of T cell assays: results from the ABIRISK consortium. 9th Open EIP Scientific Symposium And Final ABIRISK Open conference on Immunogenicity of Biopharmaceuticals. Lisbon, Portugal; 2017.

  47. Spindeldreher S, Maillère B, Correia E, Tenon M, Karle A, Jarvis P, et al. Secukinumab demonstrates significantly lower immunogenicity potential compared to ixekizumab. Dermatol Ther. 2018;8(1):57–68.

    Article  Google Scholar 

  48. Ara-Martín M, Pinto PH, Pascual-Salcedo D. Impact of immunogenicity on response to anti-TNF therapy in moderate-to-severe plaque psoriasis: results of the PREDIR study. J Dermatol Treat. 2017;28(7):606–12.

    Article  Google Scholar 

  49. Benucci M, Gobbi FL, Meacci F, Manfredi M, Infantino M, Severino M, et al. Antidrug antibodies against TNF-blocking agents: correlations between disease activity, hypersensitivity reactions, and different classes of immunoglobulins. Biol Targets Ther. 2015;9:7.

    Article  CAS  Google Scholar 

  50. Reyes-Beltrán B, Delgado G. Anti-drug antibodies in Colombian patients with rheumatoid arthritis treated with Enbrel vs Etanar–preliminary report. J Immunotoxicol. 2017;14(1):103–8.

    Article  PubMed  Google Scholar 

  51. Plasencia C, Pascual-Salcedo D, Nuño L, Bonilla G, Villalba A, Peiteado D, et al. Influence of immunogenicity on the efficacy of long-term treatment of spondyloarthritis with infliximab. Ann Rheum Dis. 2012:annrheumdis-2011-200828.

  52. Pascual-Salcedo D, Plasencia C, Ramiro S, Nuño L, Bonilla G, Nagore D, et al. Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology. 2011;50(8):1445–52.

    Article  CAS  PubMed  Google Scholar 

  53. Baert F, Noman M, Vermeire S, Van Assche G, D'haens G, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med. 2003;348(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  54. Cohen SB, Alten R, Kameda H, Hala T, Radominski SC, Rehman MI, et al. A randomized controlled trial comparing PF-06438179/GP1111 (an infliximab biosimilar) and infliximab reference product for treatment of moderate to severe active rheumatoid arthritis despite methotrexate therapy. Arthritis Res Ther. 2018;20(1):155.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hanauer S. Safety of infliximab in clinical trials. Aliment Pharmacol Ther. 1999;13:16–22.

    Article  CAS  PubMed  Google Scholar 

  56. Reich K, Jackson K, Ball S, Garces S, Kerr L, Chua L, et al. Ixekizumab pharmacokinetics, anti-drug antibodies, and efficacy through 60 weeks of treatment of moderate to severe plaque psoriasis. J Investig Dermatol. 2018;138(10):2168–73.

    Article  CAS  PubMed  Google Scholar 

  57. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, Rutgeerts P, et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  58. Lundkvist M, Engdahl E, Holmen C, Movérare R, Olsson T, Hillert J, et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Mult Scler J. 2013;19(6):757–64.

    Article  CAS  Google Scholar 

  59. van Vollenhoven RF, Emery P, Bingham CO, Keystone EC, Fleischmann R, Furst DE, et al. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J Rheumatol. 2010:jrheum. 090856.

  60. Piro L, White C, Grillo-Lopez A, Janakiraman N, Saven A, Beck T, et al. Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1999;10(6):655–61.

    Article  CAS  PubMed  Google Scholar 

  61. Reich K, Blauvelt A, Armstrong A, Langley R, Fox T, Huang J, et al. Secukinumab, a fully human anti-interleukin-17A monoclonal antibody, exhibits minimal immunogenicity in patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2017;176(3):752–8.

    Article  CAS  PubMed  Google Scholar 

  62. Deodhar AA, Gladman DD, McInnes IB, Strand V, Ren M, Spindeldreher S, et al. Secukinumab immunogenicity in patients with psoriatic arthritis and ankylosing spondylitis during a 52-week treatment period. Arthritis Rheumatol. 2018.

  63. Adedokun OJ, Xu Z, Gasink C, Jacobstein D, Szapary P, Johanns J, et al. Pharmacokinetics and exposure response relationships of ustekinumab in patients with Crohn’s disease. Gastroenterology. 2018;154(6):1660–71.

    Article  CAS  PubMed  Google Scholar 

  64. Gokemeijer J, Jawa V, Mitra-Kaushik S. How close are we to profiling immunogenicity risk using in silico algorithms and in vitro methods?: an industry perspective. AAPS J. 2017:1–6.

  65. Swaminathan A, Lucas RM, Dear K, McMichael AJ. Keyhole limpet haemocyanin–a model antigen for human immunotoxicological studies. Br J Clin Pharmacol. 2014;78(5):1135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inaba K, Metlay JP, Crowley MT, Witmer-Pack M, Steinman RM. Dendritic cells as antigen presenting cells in vivo. Int Rev Immunol. 1990;6(2–3):197–206.

    Article  CAS  PubMed  Google Scholar 

  67. Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994;152(6):2675–85.

    CAS  PubMed  Google Scholar 

  68. Kambayashi T, Laufer TM. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol. 2014;14(11):719.

    Article  CAS  PubMed  Google Scholar 

  69. Charron L, Doctrinal A, Ni Choileain S, Astier AL. Monocyte: T-cell interaction regulates human T-cell activation through a CD28/CD46 crosstalk. Immunol Cell Biol. 2015;93(9):796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ryan J. Endotoxins and cell culture. Corning Life Sciences Technical Bulletin. 2004;1–8.

  72. Münz C, Steinman RM, Fujii S-I. Dendritic cell maturation by innate lymphocytes. J Exp Med. 2005;202(2):203–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells:“l'union fait la force”. Blood. 2005;106(7):2252–8.

    Article  CAS  PubMed  Google Scholar 

  74. Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays. 2013;35(12):1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 1—theoretical model. CPT Pharmacometrics Syst Pharmacol. 2014;3(9):e133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Investig. 2006;116(9):2423–33.

    Article  CAS  PubMed  Google Scholar 

  77. Squibb B-M. Opdivo (nivolumab) package insert. Princeton: Bristol-Myers Squibb; 2015.

    Google Scholar 

  78. Dhanda SK, Grifoni A, Pham J, Vaughan K, Sidney J, Peters B, et al. Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity. Immunology. 2018;153(1):118–32.

    Article  CAS  PubMed  Google Scholar 

  79. Chen X, Hickling T, Vicini P. A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins: part 2—model applications. CPT Pharmacometrics Syst Pharmacol. 2014;3(9):1–10.

    Google Scholar 

Download references

Acknowledgments

This project was supported in part by an appointment to the Research Participation Program at CBER, US Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and FDA.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ONY, ZES, JRM, MAT, HY.

Data curation: ONY, ZES, JRM.

Formal analysis: ONY.

Funding acquisition: HY, ZES.

Investigation: ONY, ZES.

Methodology: ONY, ZES, JRM, MAT, HY.

Project administration: HY, ZES, MAT.

Resources: HY, ZES.

Software: ONY.

Supervision: HY, ZES, MAT.

Validation: ONY.

Visualization: ONY.

Writing—original draft: ONY, ZES, JRM.

Writing—review and editing: ONY, ZES, JRM, MAT, HY.

Corresponding author

Correspondence to Hong Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA's views or policies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogurtcu, O.N., Sauna, Z.E., McGill, J.R. et al. TCPro: an In Silico Risk Assessment Tool for Biotherapeutic Protein Immunogenicity. AAPS J 21, 96 (2019). https://doi.org/10.1208/s12248-019-0368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0368-0

KEY WORDS

Navigation