Skip to main content

Advertisement

Log in

Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Triple recycling (i.e., enterohepatic, enteric and local recycling) plays a central role in governing the disposition of phenolics such as flavonoids, resulting in low systemic bioavailability but higher gut bioavailability and longer than expected apparent half-life. The present study aims to investigate the coexistence of these recycling schemes using model bioactive flavonoid tilianin and a four-site perfused rat intestinal model in the presence or absence of a lactase phlorizin hydrolase (LPH) inhibitor gluconolactone and/or a glucuronidase inhibitor saccharolactone. The result showed that tilianin could be metabolized into tilianin glucuronide, acacetin, and acacetin glucuronide, which are excreted into the bile and luminal perfusate (highest in the duodenum and lowest in the colon). Gluconolactone (20 mM) significantly reduced the absorption of tilianin and the enteric and biliary excretion of acacetin glucuronide. Saccharolactone (0.1 mM) alone or in combination of gluconolactone also remarkably reduced the biliary and intestinal excretion of acacetin glucuronide. Acacetin glucuronides from bile or perfusate were rapidly hydrolyzed by bacterial β-glucuronidases to acacetin, enabling enterohepatic and enteric recycling. Moreover, saccharolactone-sensitive tilianin disposition and glucuronide deconjugation, which was more active in the small intestine than the colon, points to the small intestinal origin of the deconjugation enzyme and supports the presence of local recycling scheme. In conclusion, our studies have demonstrated triple recycling of a bioactive phenolic (i.e., a model flavonoid), and this recycling may have an impact on the site and duration of polyphenols pharmacokinetics in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu M. Commentary: bioavailability of flavonoids and polyphenols: call to arms. Mol Pharm. 2007;4(6):803–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Xia B, Zhou Q, Zheng Z, Ye L, Hu M, Liu Z. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol Pharm. 2012;9(11):3246–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Jia X, Chen J, Lin H, Hu M. Disposition of flavonoids via enteric recycling: enzyme-transporter coupling affects metabolism of biochanin A and formononetin and excretion of their phase II conjugates. J Pharmacol Exp Ther. 2004;310(3):1103–13.

    Article  CAS  PubMed  Google Scholar 

  4. Jeong EJ, Jia X, Hu M. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models. Mol Pharm. 2005;2(4):319–28.

    Article  CAS  PubMed  Google Scholar 

  5. Manwaring WH. Enterohepatic circulation of estrogens. Calif W Med. 1943;59(5):257.

    CAS  Google Scholar 

  6. Liu Y, Liu Y, Dai Y, Xun L, Hu M. Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J Alternat Complement Med (New York, NY). 2003;9(5):631–40.

    Article  Google Scholar 

  7. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304(3):1228–35.

    Article  CAS  PubMed  Google Scholar 

  8. Fresco P, Borges F, Diniz C, Marques MP. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26(6):747–66.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Hu M. Natural polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol. 2007;3(3):389–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Liu X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact Caco-2 TC7 cells using siRNA. Mol Pharm. 2007;4(6):873–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, et al. Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm. 2013;10(5):1736–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liu Y, Hu M. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab Dispos: Biol Fate Chem. 2002;30(4):370–7.

    Article  CAS  Google Scholar 

  13. Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam VH, et al. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos: Biol Fate Chem. 2005;33(12):1777–84.

    CAS  Google Scholar 

  14. Wang SW, Kulkarni KH, Tang L, Wang JR, Yin T, Daidoji T, et al. Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther. 2009;329(3):1023–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yasuda T, Mizunuma S, Kano Y, Saito K, Oshawa K. Urinary and biliary metabolites of genistein in rats. Biol Pharm Bull. 1996;19(3):413–7.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang J, Yuan X, Wang T, Chen H, Zhao H, Yan X, et al. Antioxidative and Cardioprotective Effects of Total Flavonoids Extracted from Dracocephalum moldavica L. Against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc Toxicol. 2014.

  17. Nam KW, Kim J, Hong JJ, Choi JH, Mar W, Cho MH, et al. Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice. Atherosclerosis. 2005;180(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez-Abreu O, Castillo-Espana P, Leon-Rivera I, Ibarra-Barajas M, Villalobos-Molina R, Gonzalez-Christen J, et al. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem Pharmacol. 2009;78(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  19. Ahn MR, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, et al. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res. 2009;53(5):643–51.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang L, Fang G, Zhang Y, Cao G, Wang S. Analysis of flavonoids in propolis and Ginkgo biloba by micellar electrokinetic capillary chromatography. J Agric Food Chem. 2008;56(24):11571–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, Singh RP. Acacetin inhibits in vitro and in vivo angiogenesis and downregulates stat signaling and VEGF expression. Cancer Prev Res (Philadelphia, Pa). 2013;6(10):1128–39.

    Article  CAS  Google Scholar 

  22. Watanabe K, Kanno S, Tomizawa A, Yomogida S, Ishikawa M. Acacetin induces apoptosis in human T cell leukemia Jurkat cells via activation of a caspase cascade. Oncol Rep. 2012;27(1):204–9.

    CAS  PubMed  Google Scholar 

  23. Wang SW, Chen J, Jia X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab Dispos: Biol Fate Chem. 2006;34(11):1837–48.

    Article  CAS  Google Scholar 

  24. Hu M, Chen J, Lin H. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther. 2003;307(1):314–21.

    Article  CAS  PubMed  Google Scholar 

  25. Sesink AL, Arts IC, Faassen-Peters M, Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J Nutr. 2003;133(3):773–6.

    CAS  PubMed  Google Scholar 

  26. Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol. 2003;65(7):1199–206.

    Article  CAS  PubMed  Google Scholar 

  27. Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, et al. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 2000;468(2–3):166–70.

    Article  CAS  PubMed  Google Scholar 

  28. Wilkinson AP, Gee JM, Dupont MS, Needs PW, Mellon FA, Williamson G, et al. Hydrolysis by lactase phlorizin hydrolase is the first step in the uptake of daidzein glucosides by rat small intestine in vitro. Xenobiotica Fate Foreign Compd in Biol Syst. 2003;33(3):255–64.

    Article  CAS  Google Scholar 

  29. Chen Y, Wang J, Jia X, Tan X, Hu M. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules (Basel, Switzerland). 2011;16(2):1336–48.

    Article  CAS  Google Scholar 

  30. Mackey AD, McMahon RJ, Townsend JH, Gregory 3rd JF. Uptake, hydrolysis, and metabolism of pyridoxine-5'-beta-d-glucoside in Caco-2 cells. J Nutr. 2004;134(4):842–6.

    CAS  PubMed  Google Scholar 

  31. Mizuma T, Fuseda N, Hayashi M. Kinetic characterization of glycosidase activity from disaccharide conjugate to monosaccharide conjugate in Caco-2 cells. J Pharm Pharmacol. 2005;57(5):661–4.

    Article  CAS  PubMed  Google Scholar 

  32. Kineman BD, Brummer EC, Paiva NL, Birt DF. Resveratrol from transgenic alfalfa for prevention of aberrant crypt foci in mice. Nutr Cancer. 2010;62(3):351–61.

    Article  CAS  PubMed  Google Scholar 

  33. Ghosal A, Hapangama N, Yuan Y, Achanfuo-Yeboah J, Iannucci R, Chowdhury S, et al. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia). Drug Metab Dispos: Biol fate Chem. 2004;32(3):314–20.

    Article  CAS  Google Scholar 

  34. Couture P, Lamarche B. Ezetimibe and bile acid sequestrants: impact on lipoprotein metabolism and beyond. Curr Opin Lipidol. 2013;24(3):227–32.

    Article  CAS  PubMed  Google Scholar 

  35. Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467–94.

    Article  CAS  PubMed  Google Scholar 

  36. Jeong EJ, Liu Y, Lin H, Hu M. Species- and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10. Drug Metab Dispos: Biol fate Chem. 2005;33(6):785–94.

    Article  CAS  Google Scholar 

  37. Sun D, Jones NR, Manni A, Lazarus P. Characterization of raloxifene glucuronidation: potential role of UGT1A8 genotype on raloxifene metabolism in vivo. Cancer Prev Res (Philadelphia, Pa). 2013;6(7):719–30.

    Article  PubMed Central  CAS  Google Scholar 

  38. Trdan Lusin T, Trontelj J, Mrhar A. Raloxifene glucuronidation in human intestine, kidney, and liver microsomes and in human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab Dispos: Biol Fate Chem. 2011;39(12):2347–54.

    Article  Google Scholar 

  39. Chen J, Lin H, Hu M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother Pharmacol. 2005;55(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  40. Xu H, Kulkarni KH, Singh R, Yang Z, Wang SW, Tam VH, et al. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm. 2009;6(6):1703–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rong Z, Xu Y, Zhang C, Xiang D, Li X, Liu D. Evaluation of intestinal absorption of amtolmetin guacyl in rats: breast cancer resistant protein as a primary barrier of oral bioavailability. Life Sci. 2013;92(3):245–51.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang W, Xu B, Wu B, Yu R, Hu M. UDP-glucuronosyltransferase (UGT) 1A9-overexpressing HeLa cells is an appropriate tool to delineate the kinetic interplay between breast cancer resistance protein (BRCP) and UGT and to rapidly identify the glucuronide substrates of BCRP. Drug Metab Dispos: Biol Fate Chem. 2012;40(2):336–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Projects of National Natural Science Foundation of China (81120108025 and U1203204). MH was also supported by National Institute of Health Grant Number GM070737.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Hu or Zhongqiu Liu.

Additional information

Guangzhou University of Chinese Medicine and Southern Medical University contributed equally to this paper.

Peimin Dai and Lijun Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 670 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, P., Zhu, L., Luo, F. et al. Triple Recycling Processes Impact Systemic and Local Bioavailability of Orally Administered Flavonoids. AAPS J 17, 723–736 (2015). https://doi.org/10.1208/s12248-015-9732-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9732-x

KEY WORDS

Navigation