1 Introduction

The Banach fixed point theorem (BFPT) [1] is an important tool in fixed point theory. It guarantees the existence and uniqueness of a fixed point of certain self-mappings on metric spaces. It has various applications in several branches of mathematics. There are many extensions and generalizations of the BFPT in the literature; see [27]. Berinde [8, 9] studied various contractive-type mappings and introduced the concept of almost contractions.

Definition 1.1

([8])

A mapping \(\mathcal{\textsl{T}} : \mathcal{W} \rightarrow \mathcal{W}\) on a metric space \((\mathcal{W}, \textsl{d})\) is called an almost contraction if there exist \(0 \leq \lambda < 1\) and \({\L } \geq 0\) such that

$$ \textsl{d}(\mathcal{\textsl{T}}\omega _{1}, \mathcal{ \textsl{T}} \omega _{2}) \leq \lambda \textsl{d}(\omega _{1}, \omega _{2}) + {\L } \textsl{d}(\omega _{2}, \mathcal{\textsl{T}}\omega _{1}) $$
(1)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\).

Further, Berinde [9] generalized Definition 1.1 in the following way.

Definition 1.2

([9])

A mapping \(\mathcal{\textsl{T}} : \mathcal{W} \rightarrow \mathcal{W}\) on a metric space \((\mathcal{W}, \textsl{d})\) is called a generalized almost contraction if there exist \(0 \leq \lambda < 1\) and \({\L } \geq 0\) such that

$$ \begin{aligned}[b] \textsl{d}(\mathcal{\textsl{T}}\omega _{1}, \mathcal{ \textsl{T}} \omega _{2})) &\leq \lambda \textsl{d}(\omega _{1}, \omega _{2})\\ &\quad {} + {\L } \min \bigl\{ \textsl{d}\bigl( \omega _{1}, \mathcal{\textsl{T}}(\omega _{1})\bigr), \textsl{d}\bigl(\omega _{2}, \mathcal{\textsl{T}}(\omega _{2})\bigr), \textsl{d}\bigl(\omega _{1}, \mathcal{ \textsl{T}}(\omega _{2})\bigr), \textsl{d}\bigl(\omega _{2}, \mathcal{\textsl{T}}(\omega _{1})\bigr)\bigr\} \end{aligned} $$
(2)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\).

Wardowski [10] introduced a new type of contractions, called \(\mathcal{\mathbf{F}}\)-contractions, and established a related fixed point theorem in the context of complete metric spaces.

Definition 1.3

([10])

A mapping \(\mathcal{\textsl{T}} : \mathcal{W} \rightarrow \mathcal{W}\) on a metric space \((\mathcal{W}, \textsl{d})\) is called an \(\mathcal{\mathbf{F}}\)-contraction if there exists \(\Omega > 0\) such that

$$ \textsl{d}(\mathcal{\textsl{T}}\omega _{1}, \mathcal{ \textsl{T}} \omega _{2})>0 \quad \Longrightarrow\quad \Omega + \mathcal{ \mathbf{F}}\bigl( \textsl{d}(\mathcal{\textsl{T}}\omega _{1}, \mathcal{ \textsl{T}} \omega _{2})\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}(\omega _{1}, \omega _{2})\bigr) $$
(3)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\), where \(\mathcal{\mathbf{F}} : (0, \infty ) \rightarrow \mathbb{R}\) is a function satisfying the following axioms:

(C1):

\(\mathcal{\mathbf{F}}\) is strictly nondecreasing;

(C2):

for each sequence \(\{\textsl{a}_{n}\} \subset (0, \infty )\) of positive real numbers, \(\lim_{n \rightarrow \infty } \textsl{a}_{n} = 0\) if and only if \(\lim_{n \rightarrow \infty } \mathcal{\mathbf{F}}( \textsl{a}_{n}) = -\infty \);

(C3):

for each sequence \(\{\textsl{a}_{n}\} \subset (0, \infty )\) such that \(\lim_{n \rightarrow \infty } \textsl{a}_{n} = 0\), there exists \(l \in (0, 1)\) such that \(\lim_{n \rightarrow \infty } (\textsl{a}_{n})^{l} \mathcal{\mathbf{F}}(\textsl{a}_{n}) = 0\).

The following works deal with F-contractions: [1116]. Afterward, Altun et al. [17] modified Definition 1.3 by adding the following condition:

(C4):

\(\mathcal{\mathbf{F}}(\inf \mathcal{\mathbf{A}}) = \inf \mathcal{\mathbf{F}}(\mathcal{\mathbf{A}})\) for all \(\mathcal{\mathbf{A}} \subset (0, \infty )\) with \(\inf \mathcal{\mathbf{A}} > 0\).

We denote by \(\mathcal{F}\) the family of all functions \(\mathcal{\mathbf{F}}\) satisfying (C1)–(C4).

Nadler [18] derived the multivalued version of Banach fixed point theorem by using the Hausdorff metric over the family of nonempty closed bounded subsets of a complete metric space. We denote by \(\textsl{CLB}(\mathcal{W})\) the family of nonempty closed bounded subsets and by \(\textsl{CLD}(\mathcal{W})\) the family of nonempty closed subsets of \(\mathcal{W}\). Recently, Kamran et al. [19] introduced the concept of an extended b-metric space, which generalized the notion of a b-metric space [20, 21] by replacing the constant with a function depending on two variables.

Definition 1.4

([19])

Let \(\mathcal{W}\) be a nonempty set, and let \(\sigma : \mathcal{W} \times \mathcal{W} \rightarrow [1, \infty )\). Then a function \(\textsl{d}_{\sigma } : \mathcal{W} \times \mathcal{W} \rightarrow [0, \infty )\) is called an extended b-metric if for all \(\omega _{1}, \omega _{2}, \omega _{3} \in \mathcal{W}\), it satisfies the following axioms:

(i):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = 0\) iff \(\omega _{1} = \omega _{2}\),

(ii):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = \textsl{d}_{\sigma }( \omega _{2}, \omega _{1})\),

(iii):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{3}) \leq \sigma (\omega _{1}, \omega _{3})[\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) + \textsl{d}_{\sigma }(\omega _{2}, \omega _{3})]\).

The pair \((\mathcal{W}, \textsl{d}_{\sigma })\) is called an extended b-metric space.

Later on, several researchers worked on fixed point results in the context of extended b-metric spaces; see [2225]. In the same direction, Mlaiki et al. [26] gave the idea of a controlled-type metric space (for further extensions, see [27]), which generalizes the notion of a b-metric space.

Definition 1.5

([26])

Let \(\mathcal{W}\) be a nonempty set, and let \(\sigma : \mathcal{W} \times \mathcal{W} \rightarrow [1, \infty )\). Then a function \(\textsl{d}_{\sigma } : \mathcal{W} \times \mathcal{W} \rightarrow [0, \infty )\) is called a controlled metric if for all \(\omega _{1}, \omega _{2}, \omega _{3} \in \mathcal{W}\), it satisfies the following axioms:

(i):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = 0\) iff \(\omega _{1} = \omega _{2}\),

(ii):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = \textsl{d}_{\sigma }( \omega _{2}, \omega _{1})\),

(iii):

\(\textsl{d}_{\sigma }(\omega _{1}, \omega _{3}) \leq \sigma (\omega _{1}, \omega _{2})\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) + \sigma ( \omega _{2}, \omega _{3})\textsl{d}_{\sigma }(\omega _{2}, \omega _{3})\).

The pair \((\mathcal{W}, \textsl{d}_{\sigma })\) is called a controlled metric space.

Remark 1.1

Every controlled metric space is a generalization of a b-metric space and is different from an extended b-metric space.

Example 1.1

Let \(\mathcal{W} = [0, \infty )\). Define \(\textsl{d}_{\sigma } : \mathcal{W} \times \mathcal{W} \rightarrow [0, \infty )\) as

$$ \textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = \textstyle\begin{cases} 0 & \text{if }\omega _{1} = \omega _{2}, \\ \frac{1}{\omega _{1}} & \text{if }\omega _{1} \geq 1\text{ and }\omega _{2} \in [0, 1), \\ \frac{1}{\omega _{2}} & \text{if }\omega _{2} \geq 1\text{ and }\omega _{1} \in [0, 1), \\ 1 &\text{otherwise.} \end{cases} $$

Hence \((\mathcal{W}, \textsl{d}_{\sigma })\) is a controlled metric space, where \(\sigma : \mathcal{W} \times \mathcal{W} \rightarrow [1, \infty )\) is defined by

$$ \sigma (\omega _{1}, \omega _{2}) = \textstyle\begin{cases} 1 & \text{if }\omega _{1}, \omega _{2} \in [0, 1), \\ \max \{\omega _{1}, \omega _{2}\} &\text{otherwise.} \end{cases} $$

For other definitions and information on the topology induced by \(\textsl{d}_{\sigma }\), see [26]. In [28], Alamgir et al. established a Pompieu–Hausdorff metric over the family of nonempty closed subsets of a controlled metric space W as follows.

Definition 1.6

([28])

Let \(\mathcal{\mathbf{A}}\), \(\mathcal{\mathbf{B}}\) be nonempty closed subsets of a controlled metric space \((\mathcal{W}, \textsl{d}_{\sigma })\). Define \(\textsl{H}_{\sigma } : \textsl{CLD}(\mathcal{W}) \times \textsl{CLD}( \mathcal{W}) \rightarrow [0, \infty ]\) by

$$ \textsl{H}_{\sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}) = \textstyle\begin{cases} \max \{\sup_{\textsl{a} \in \mathcal{\mathbf{A}}} \textsl{d}_{\sigma }( \textsl{a}, \mathcal{\mathbf{B}}), \sup_{\textsl{b} \in \mathcal{\mathbf{B}}}\textsl{d}_{\sigma }(\textsl{b}, \mathcal{\mathbf{A}})\} & \text{if the maximum exists;} \\ \infty & \text{otherwise.} \end{cases} $$

Theorem 1.1

([28])

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a controlled metric space. Then the mapping \(\textsl{H}_{\sigma } : \textsl{CLD}(\mathcal{W}) \times \textsl{CLD}( \mathcal{W}) \rightarrow [0, \infty ]\) is a Pompieu–Hausdorff controlled metric on \(\textsl{CLD}(\mathcal{W})\).

On the other hand, in 1981, Heilpern [29] used fuzzy sets [30] to introduce a class of fuzzy mappings, which is a generalization of multivalued mappings and proved a fixed point theorem for fuzzy contraction mappings in metric spaces. The result introduced by Heilpern is a fuzzy generalization of the Banach fixed point theorem. Consequently, several authors studied and generalized fuzzy fixed point theorems in many directions; see [3138]. In this paper, we prove some common α-fuzzy fixed point results for fuzzy mappings under generalized almost \(\mathcal{\mathbf{F}}\)-contractions in the context of controlled metric spaces, which generalize many preexisting results in the literature. At the end, we give an example for the justification of our main result.

2 Main results

In this section, we define fuzzy sets, fuzzy mappings, and α-fuzzy fixed points and prove some common α fuzzy fixed point results in the context of controlled metric spaces.

Definition 2.1

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a controlled metric space with \(\sigma : \mathcal{W} \times \mathcal{W} \rightarrow [1, \infty )\). Then a fuzzy set \(\mathcal{\mathbf{A}}_{\sigma }\) in \(\mathcal{W}\) is characterized by a membership function

$$ \mathcal{\mathbb{F}}_{\mathcal{\mathbf{A}}_{\sigma }}: \mathcal{W} \rightarrow [0, 1], $$

which assigns to every member of \(\mathcal{W}\) a membership grade in \(\mathcal{\mathbf{A}}_{\sigma }\).

We denote by \(\mathcal{\mathcal{\mathbb{F}}}_{\sigma }(\mathcal{W})\) the collection of all fuzzy sets in \(\mathcal{W}\). Let \(\mathcal{\mathbf{A}}_{\sigma } \in \mathcal{\mathcal{\mathbb{F}}}_{ \sigma }(\mathcal{W})\) and \(\alpha \in [0, 1]\). Then the α-level set of \(\mathcal{\mathbf{A}}_{\sigma }\) is denoted by \([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }\) and is defined as

$$\begin{aligned}& [\mathcal{\mathbf{A}}_{\sigma }]_{\alpha } = \bigl\{ \mu \in \mathcal{W} : \mathcal{\mathbf{A}}_{\sigma }(\mu ) \geq \alpha \bigr\} , \quad \alpha \in (0, 1], \\& [\mathcal{\mathbf{A}}_{\sigma }]_{0} = \overline{\bigl\{ \mu \in \mathcal{W} : \mathcal{\mathbf{A}}_{\sigma }(\mu ) > 0\bigr\} }, \end{aligned}$$

where \(\overline{\mathcal{\mathbf{B}}}\) denotes the closure of \(\mathcal{\mathbf{B}}\). Clearly, \([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }\) and \([\mathcal{\mathbf{A}}_{\sigma }]_{0}\) are subsets of the controlled metric space \(\mathcal{W}\). For \(\mathcal{\mathbf{A}}_{\sigma }, \mathcal{\mathbf{B}}_{\sigma } \in \mathcal{\mathcal{\mathbf{F}}}_{\sigma }(\mathcal{W})\), a fuzzy set \(\mathcal{\mathbf{A}}_{\sigma }\) is said to be more accurate than a fuzzy set \(\mathcal{\mathbf{B}}_{\sigma }\), denoted by \(\mathcal{\mathbf{A}}_{\sigma } \subset \mathcal{\mathbf{B}}_{\sigma }\), if \(f_{\mathcal{\mathbf{A}}_{\sigma }}(\mu ) \leq f_{\mathcal{\mathbf{B}}_{ \sigma }}(\mu )\) for each \(\mu \in \mathcal{W}\). Now, for \(\mu \in \mathcal{W}\), \(\mathcal{\mathbf{A}}_{\sigma }, \mathcal{\mathbf{B}}_{\sigma } \in \mathcal{\mathcal{\mathbb{F}}}_{\sigma }(\mathcal{W})\), \(\alpha \in [0, 1]\), and \([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, [\mathcal{\mathbf{B}}_{ \sigma }]_{\alpha } \in \textsl{CLB}(\mathcal{W})\), define

$$\begin{aligned}& \rho _{\alpha }\bigl(\mu , [\mathcal{\mathbf{A}}_{\sigma }]_{\alpha } \bigr) = \inf \bigl\{ d(\mu , \textsl{a}) : \textsl{a} \in [\mathcal{ \mathbf{A}}_{ \sigma }]_{\alpha }\bigr\} , \\& \rho _{\alpha }\bigl([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, [ \mathcal{\mathbf{B}}_{\sigma }]_{\alpha }\bigr) = \inf \bigl\{ d( \textsl{a}, \textsl{b}) : \textsl{a} \in [\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, \textsl{b} \in [\mathcal{\mathbf{B}}_{\sigma }]_{\alpha }\bigr\} , \\& \rho \bigl([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, [\mathcal{ \mathbf{B}}_{ \sigma }]_{\alpha }\bigr)= \sup_{\alpha } \rho _{\alpha }\bigl([ \mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, [ \mathcal{\mathbf{B}}_{ \sigma }]_{\alpha }\bigr). \end{aligned}$$

Remark 2.1

By Theorem 1.1 the function \(\textsl{H}_{\sigma } : \textsl{CLB}(\mathcal{W}) \times \textsl{CLB}( \mathcal{W}) \rightarrow [0, \infty ]\) defined by

$$ \begin{aligned} &\textsl{H}_{\sigma }\bigl([\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }, [ \mathcal{\mathbf{B}}_{\sigma }]_{\alpha }\bigr)\\ &\quad = \textstyle\begin{cases} \max \{\sup_{\textsl{a} \in [\mathcal{\mathbf{A}}_{\sigma }]_{\alpha }} d(\textsl{a}, [\mathcal{\mathbf{B}}_{\sigma }]_{\alpha }), \sup_{ \textsl{b} \in [\mathcal{\mathbf{B}}_{\sigma }]_{\alpha }}d(\textsl{b}, [ \mathcal{\mathbf{A}}_{\sigma }]_{\alpha })\} & \text{if the maximum exists,} \\ \infty & \text{otherwise,} \end{cases}\displaystyle \end{aligned} $$

is a generalized Hausdorff controlled fuzzy metric on \(\textsl{CLB}(\mathcal{W})\).

Definition 2.2

Let \(\mathcal{\mathbf{S}}\), \(\mathcal{\mathbf{T}}\) be fuzzy mappings from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\). Then

(i):

An element \(\mu \in \mathcal{W}\) is called an α-fuzzy fixed point of \(\mathcal{\mathbf{T}}\) if there exists \(\alpha _{\mathcal{\mathbf{T}}}(\mu ) \in (0, 1]\) such that \(\mu \in [\mathcal{\mathbf{T}}\mu ]_{\alpha _{\mathcal{\mathbf{T}}}( \mu )}\).

(ii):

An element \(\mu \in \mathcal{W}\) is called a common α-fuzzy fixed point of \(\mathcal{\mathbf{S}}\) and \(\mathcal{\mathbf{T}}\) if there exist \(\alpha _{\mathcal{\mathbf{S}}}(\mu ), \alpha _{\mathcal{\mathbf{T}}}( \mu ) \in (0, 1]\) such that \(\mu \in [\mathcal{\mathbf{S}}\mu ]_{\alpha _{\mathcal{\mathbf{S}}}( \mu )} \cap [\mathcal{\mathbf{T}}\mu ]_{\alpha _{\mathcal{\mathbf{T}}}( \mu )} \).

(iii):

For \(\alpha = 1\), μ is called a common fixed point of fuzzy mappings.

Lemma 2.1

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a controlled metric space, and let \(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}} \in \textsl{CLB}( \mathcal{W})\). Then for each \(\textsl{a} \in \mathcal{\mathbf{A}}\),

$$ \textsl{d}_{\sigma }(\textsl{a}, \mathcal{\mathbf{B}}) \leq \textsl{H}_{ \sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}). $$

Proof

Let us suppose on the contrary that for each \(\textsl{a} \in \mathcal{\mathbf{A}}\),

$$ \textsl{d}_{\sigma }(\textsl{a}, \mathcal{\mathbf{B}}) > \textsl{H}_{ \sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}).$$
(4)

From Definition 1.6 we have that for each \(\textsl{a} \in \mathcal{\mathbf{A}}\),

$$ \textsl{d}_{\sigma }(\textsl{a}, \mathcal{\mathbf{B}}) \leq \textsl{H}_{ \sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}).$$
(5)

Hence from equations (4) and (5) we get

$$ \textsl{H}_{\sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}) < \textsl{d}_{\sigma }(\textsl{a}, \mathcal{\mathbf{B}}) \leq \textsl{H}_{ \sigma }(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}}), $$

a contradiction. □

Theorem 2.1

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{S}}\), \(\mathcal{\mathbf{T}}\) be fuzzy mappings from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\). Suppose for each \(\omega _{1} \in \mathcal{W}\), there exist \(\alpha _{\mathcal{\mathbf{S}}}(\omega _{1}), \alpha _{ \mathcal{\mathbf{T}}}(\omega _{2}) \in (0, 1]\) such that \([\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})}\), \([\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\) are nonempty closed subsets of \(\mathcal{W}\). Suppose that there exist some \(\mathcal{\mathbf{F}} \in \mathcal{F}\), \(\Omega > 0\), and \({\L } \geq 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})}, [\mathcal{\mathbf{T}} \omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) + {\L }\bigl(\textsl{M}( \omega _{1}, \omega _{2})\bigr) $$
(6)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }([\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{2})}) > 0\), where

$$ \begin{aligned} \textsl{M}(\omega _{1}, \omega _{2}) &= \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{S}} \omega _{1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{1})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, [\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{2})} \bigr), \\ &\quad \textsl{d}_{\sigma }\bigl(\omega _{1}, [ \mathcal{ \mathbf{T}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{2})}\bigr), \textsl{d}_{\sigma } \bigl(\omega _{2}, [ \mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})} \bigr)\bigr\} . \end{aligned} $$

Then there exists a common α-fuzzy fixed point of \(\mathcal{\mathbf{S}}\) and \(\mathcal{\mathbf{T}}\).

Proof

Let us take an arbitrary \(\omega _{0} \in \mathcal{W}\). Then by the hypothesis there exists \(\alpha _{\mathcal{\mathbf{S}}}(\omega _{0}) \in (0, 1]\) such that \([\mathcal{\mathbf{S}}\omega _{0}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{0})}\) is a nonempty closed subset of \(\mathcal{W}\). Let \(\omega _{1} \in [\mathcal{\mathbf{S}}\omega _{0}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{0})}\). For such \(\omega _{1}\), there exists \(\alpha _{\mathcal{\mathbf{T}}}(\omega _{1}) \in (0, 1]\) such that \([\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\) is a nonempty closed subset of \(\mathcal{W}\). From Lemma 2.1, condition \((C1)\) of Definition 1.3, and (6) we can write

$$ \begin{aligned}[b] \Omega + \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }\bigl(\omega _{1}, [ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})} \bigr) &\leq \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{\mathbf{S}}\omega _{0}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{0})}, [\mathcal{\mathbf{T}} \omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}\bigr) \\ &\leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{0}, \omega _{1})\bigr) + {\L }\bigl(\textsl{M}( \omega _{0}, \omega _{1}) \bigr),\end{aligned} $$
(7)

where

$$ \begin{aligned} \textsl{M}(\omega _{0}, \omega _{1}) &= \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{0}, [\mathcal{\mathbf{S}} \omega _{0}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{0})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})} \bigr),\\ &\quad \textsl{d}_{\sigma }\bigl(\omega _{0}, [ \mathcal{ \mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\bigr), \textsl{d}_{\sigma } \bigl(\omega _{1}, [ \mathcal{\mathbf{S}}\omega _{0}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{0})} \bigr)\bigr\} . \end{aligned} $$

From condition \((C4)\) we can write

$$ \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }\bigl(\omega _{1}, [ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\bigr) = \inf _{\textsl{y} \in [\mathcal{\mathbf{T}}\omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})}} \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }( \omega _{1}, \textsl{y})\bigr). $$

Thus we have

$$\begin{aligned} &\Omega + \inf_{\textsl{y} \in [\mathcal{\mathbf{T}}\omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})}} \mathcal{\mathbf{F}}( \textsl{d}_{\sigma }(\omega _{1}, \textsl{y})\\ &\quad \leq \mathcal{ \mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{0}, \omega _{1})\bigr) + { \L }\min \bigl\{ \textsl{d}_{\sigma }\bigl(\omega _{0}, [\mathcal{\mathbf{S}} \omega _{0}]_{\alpha _{\mathcal{\mathbf{S}}}(\omega _{0})} \bigr), \textsl{d}_{\sigma }\bigl(\omega _{1}, [\mathcal{ \mathbf{T}}\omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})}\bigr), \\ &\qquad \textsl{d}_{\sigma }\bigl(\omega _{0}, [\mathcal{\mathbf{T}} \omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{S}}\omega _{0}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{0})} \bigr)\bigr\} . \end{aligned}$$

Then there exists \(\omega _{2} \in [\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}\) such that

$$ \begin{aligned} &\Omega + \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) \\ &\quad \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }( \omega _{0}, \omega _{1})\bigr) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{0}, \omega _{1}), \textsl{d}_{\sigma }(\omega _{1}, \omega _{2}), \textsl{d}_{\sigma }( \omega _{0}, \omega _{2}), \textsl{d}_{\sigma }(\omega _{1}, \omega _{1}) \bigr\} \\ &\quad = \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{0}, \omega _{1})\bigr). \end{aligned} $$

For this \(\omega _{2}\), there exists \(\alpha _{\mathcal{\mathbf{S}}}(\omega _{2}) \in (0, 1]\) such that \([\mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{2})}\) is a nonempty closed subset of \(\mathcal{W}\). From Lemma 2.1, condition \((C1)\) of Definition 1.3, and (6) we have

$$\begin{aligned} \Omega + \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }\bigl(\omega _{2}, [ \mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{2})} \bigr) & \leq \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{ \sigma }\bigl([ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}, [\mathcal{\mathbf{S}} \omega _{2}]_{ \alpha _{\mathcal{\mathbf{S}}}(\omega _{2})}\bigr) \\ & \leq \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{ \mathbf{S}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{2})}, [\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}\bigr) \\ & \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2}, \omega _{1})\bigr) + {\L }\bigl(\textsl{M}(\omega _{2}, \omega _{1})\bigr), \end{aligned}$$

where

$$ \begin{aligned} \textsl{M}(\omega _{2}, \omega _{1}) &= \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{2}, [\mathcal{\mathbf{S}} \omega _{2}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})} \bigr),\\ &\quad \textsl{d}_{\sigma }\bigl(\omega _{2}, [ \mathcal{ \mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\bigr), \textsl{d}_{\sigma } \bigl(\omega _{1}, [ \mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{2})} \bigr)\bigr\} . \end{aligned} $$

From condition \((C4)\), we can write

$$ \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }\bigl(\omega _{2}, [ \mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}}( \omega _{2})\bigr)\bigr) = \inf_{\textsl{y}^{\prime } \in [\mathcal{\mathbf{S}} \omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}(\omega _{2})}} \mathcal{\mathbf{F}} \bigl(\textsl{d}_{\sigma }\bigl(\omega _{2}, \textsl{y}^{\prime } \bigr)\bigr). $$

Then we have

$$\begin{aligned} &\Omega + \inf_{\textsl{y}^{\prime } \in [\mathcal{\mathbf{S}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{S}}}(\omega _{2})}} \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }\bigl(\omega _{2}, \textsl{y}^{\prime } \bigr)\bigr) \\ &\quad \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2}, \omega _{1})\bigr) + { \L }\min \bigl\{ \textsl{d}_{\sigma }\bigl(\omega _{2}, [\mathcal{\mathbf{S}} \omega _{2}]_{\alpha _{\mathcal{\mathbf{S}}}(\omega _{2})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{T}}\omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})} \bigr), \\ &\qquad \textsl{d}_{\sigma }\bigl(\omega _{2}, [\mathcal{\mathbf{T}} \omega _{1}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{1})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2})} \bigr)\bigr\} . \end{aligned}$$

Thus there exists \(\omega _{3} \in [\mathcal{\mathbf{S}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2})}\) such that

$$ \begin{aligned} &\Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2}, \omega _{3})\bigr)\\ &\quad \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{2}, \omega _{3}), \textsl{d}_{\sigma }(\omega _{1}, \omega _{2}), \textsl{d}_{\sigma }( \omega _{2}, \omega _{2}), \textsl{d}_{\sigma }(\omega _{1}, \omega _{3}) \bigr\} . \end{aligned} $$

This implies that

$$ \Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2}, \omega _{3})\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr). $$

By continuing the same procedure recursively we obtain a sequence \(\{\omega _{n}\}_{n = 0}^{\infty }\) in \(\mathcal{W}\) such that \(\omega _{2n + 1} \in [\mathcal{\mathbf{S}}\omega _{2n}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2n})}\), \(\omega _{2n + 2} \in [\mathcal{\mathbf{T}}\omega _{2n + 1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2n + 1})}\). Also,

$$ \Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }( \omega _{2n + 1}, \omega _{2n + 2})\bigr) \leq \mathcal{\mathbf{F}} \bigl(\textsl{d}_{\sigma }( \omega _{2n}, \omega _{2n + 1}) \bigr),$$
(8)

and

$$ \Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }( \omega _{2n + 2}, \omega _{2n + 3})\bigr) \leq \mathcal{\mathbf{F}} \bigl(\textsl{d}_{\sigma }( \omega _{2n + 1}, \omega _{2n + 2}) \bigr)$$
(9)

for all \(n \in \mathbb{N}\). From equations (8) and (9) we have

$$ \Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }( \omega _{n - 1}, \omega _{n})\bigr). $$

Therefore

$$ \begin{aligned}[b] \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})\bigr)& \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{n - 1}, \omega _{n})\bigr) - \Omega \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }( \omega _{n - 2}, \omega _{n - 1})\bigr) - 2 \Omega \leq \cdots\\ & \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{0}, \omega _{1})\bigr) - n \Omega .\end{aligned} $$
(10)

By taking the limit as \(n \rightarrow \infty \) in equation (10) we get \(\lim_{n \rightarrow \infty } \mathbb{F}(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})) = -\infty \). Next, from condition \((C2)\) of Definition 1.3 we have

$$ \lim_{n \rightarrow \infty } \textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1}) = 0. $$

Also, by condition \((C3)\) of Definition 1.3 there exists \(l \in (0, 1)\) such that

$$ \lim_{n \rightarrow \infty } \bigl(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})\bigr)^{l} \mathcal{\mathbf{F}} \bigl(\textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1}) \bigr) = 0. $$

From equation (10) we have that for all \(n \in \mathbb{N}\),

$$ \begin{aligned}[b] & \bigl(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})\bigr)^{l} \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})\bigr) - \bigl(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1}) \bigr)^{l} \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{0}, \omega _{1})\bigr)\\ &\quad \leq -\bigl(\textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1})\bigr)^{l} n \Omega \leq 0.\end{aligned} $$
(11)

By letting \(n \rightarrow \infty \) in (11) we obtain

$$ \lim_{n \rightarrow \infty } n\bigl(\textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1})\bigr)^{l} = 0. $$
(12)

By equation (12) there exists \(n_{1} \in \mathbb{N}\) such that \(n (\mathcal{\mathbf{F}}(\textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1})))^{l} \leq 1\) for all \(n \geq n_{1}\). Thus, for all \(n \geq n_{1}\), we have

$$ \textsl{d}_{\sigma }(\omega _{n}, \omega _{n + 1}) \leq \frac{1}{n^{\frac{1}{l}}}.$$
(13)

From the triangle inequality and equation (13) for \(m > n \geq n_{1}\), we have

$$\begin{aligned} \textsl{d}_{\sigma }(\omega _{n}, \omega _{m}) &\leq \sigma (\omega _{n}, \omega _{n + 1})\textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1}) + \sigma (\omega _{n + 1}, \omega _{m})\textsl{d}_{\sigma }(\omega _{n + 1}, \omega _{m}) \\ & \leq \sigma (\omega _{n}, \omega _{n + 1}) \textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1}) + \sigma (\omega _{n}, \omega _{m}) \sigma (\omega _{n + 1}, \omega _{n + 2})\textsl{d}_{\sigma }(\omega _{n + 1}, \omega _{n + 2}) \\ & \quad{} + \sigma (\omega _{n}, \omega _{m})\sigma (\omega _{n + 2}, \omega _{m})\textsl{d}_{\sigma }(\omega _{n + 2}, \omega _{m}) \\ & \quad \vdots \\ &\leq \sigma (\omega _{n}, \omega _{n + 1}) \textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1}) + \sum _{i = 1}^{m - 2} \Biggl(\prod _{j = 1}^{i}\sigma (\omega _{j}, \omega _{m}) \Biggr) \sigma (\omega _{i}, \omega _{i + 1}) \textsl{d}_{\sigma }(\omega _{i}, \omega _{i + 1}) \\ & \quad{} + \prod_{j = 1}^{m - 1} \sigma (\omega _{j}, \omega _{m}) \sigma (\omega _{m - 1}, \omega _{m}) \textsl{d}_{\sigma }(\omega _{m - 1}, \omega _{m}) \\ & \leq \sigma (\omega _{n}, \omega _{n + 1}) \textsl{d}_{\sigma }( \omega _{n}, \omega _{n + 1}) + \sum _{i = 1}^{m - 1} \Biggl(\prod _{j = 1}^{i}\sigma (\omega _{j}, \omega _{m}) \Biggr) \sigma (\omega _{i}, \omega _{i + 1}) \textsl{d}_{\sigma }(\omega _{i}, \omega _{i + 1}) \\ & \leq \sigma (\omega _{n}, \omega _{n + 1})\frac{1}{n^{\frac{1}{l}}} + \sum_{i = 1}^{\infty } \Biggl(\prod _{j = 1}^{i}\sigma (\omega _{j}, \omega _{m}) \Biggr) \sigma (\omega _{i}, \omega _{i + 1}) \frac{1}{i^{\frac{1}{l}}}. \end{aligned}$$

Since \(\lim_{n, m \rightarrow \infty }\sigma (\omega _{n + 1}, \omega _{m})l < 1\) for all \(\omega _{n}, \omega _{m} \in \mathcal{W}\), the series \(\sum_{i = 1}^{ \infty } (\prod_{j = 1}^{i}\sigma (\omega _{j}, \omega _{m}) ) \sigma (\omega _{i}, \omega _{i + 1})\frac{1}{i^{\frac{1}{l}}}\) converges by the ratio test for each \(m \in \mathbb{N}\). Therefore, by taking the limit as \(n \rightarrow \infty \) in the above inequality we get \(\textsl{d}_{\sigma }(\omega _{n}, \omega _{m}) \rightarrow 0\). Since \(\mathcal{W}\) is complete, there exists \(\rho \in \mathcal{W}\) such that \(\lim_{n \rightarrow \infty }\omega _{n} = \rho \). Next, we prove that ρ is a fixed point of \(\mathcal{\mathbf{T}}\). Suppose on the contrary that ρ is not a fixed point of \(\mathcal{\mathbf{T}}\). Then there exist \(\mathbb{N}_{0} \in \mathbb{N}\) and a subsequence \(\{\omega _{n_{r}}\}\) of \(\{\omega _{n}\}\) such that \(\textsl{d}_{\sigma }(\omega _{2n_{r}}, [\mathcal{\mathbf{T}}\rho ]_{ \alpha _{\mathcal{\mathbf{T}}}(\rho )}) > 0\) for all \(n_{r} \geq \mathbb{N}_{0}\). As \(\textsl{d}_{\sigma }(\omega _{2n_{r}}, [\mathcal{\mathbf{T}}\rho ]_{ \alpha _{\mathcal{\mathbf{T}}}(\rho )}) > 0\) for all \(n_{r} \geq \mathbb{N}_{0}\), from Lemma 2.1, condition \((1)\) of Definition 1.3, and (6) we have

$$\begin{aligned} &\Omega + \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }\bigl(\omega _{2n_{r}}, [ \mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr)\bigr) \\ &\quad \leq \Omega + \mathcal{\mathbf{F}}\bigl(\textsl{H}_{\sigma }\bigl([ \mathcal{ \mathbf{S}}\omega _{2n_{r} - 1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2n_{r} - 1})}, [\mathcal{\mathbf{T}} \rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr)\bigr) \\ &\quad \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \rho )\bigr) + {\L }\min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{2n_{r} - 1}, [ \mathcal{\mathbf{S}}\omega _{2n_{r} - 1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{2n_{r} - 1})} \bigr), \\ & \qquad \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}}\rho ]_{ \alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \textsl{d}_{\sigma }\bigl(\omega _{2n_{r} - 1}, [ \mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}( \rho )}\bigr), \textsl{d}_{\sigma }\bigl( \rho , [\mathcal{\mathbf{S}}\omega _{2n_{r} - 1}]_{\alpha _{\mathcal{\mathbf{S}}}(\omega _{2n_{r} - 1})}\bigr)\bigr\} \\ &\quad \leq \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \rho ) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \omega _{2n_{r}}), \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}}\rho ]_{\alpha _{ \mathcal{\mathbf{T}}}(\rho )}\bigr), \\ & \qquad \textsl{d}_{\sigma }\bigl(\omega _{2n_{r} - 1}, [ \mathcal{ \mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \textsl{d}_{\sigma }(\rho , \omega _{2n_{r}})\bigr\} . \end{aligned}$$

This implies that

$$\begin{aligned} \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }\bigl(\omega _{2n_{r}}, [ \mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr)\bigr) & \leq \mathcal{ \mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \rho )\bigr) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \omega _{2n_{r}}), \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}} \rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \\ & \quad \textsl{d}_{\sigma }\bigl(\omega _{2n_{r} - 1}, [ \mathcal{ \mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \textsl{d}_{\sigma }(\rho , \omega _{2n_{r}})\bigr\} - \Omega \\ & < \mathcal{\mathbf{F}}(\textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \rho ) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \omega _{2n_{r}}), \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}}\rho ]_{\alpha _{ \mathcal{\mathbf{T}}}(\rho )}\bigr), \\ & \quad \textsl{d}_{\sigma }\bigl(\omega _{2n_{r} - 1}, [ \mathcal{ \mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \textsl{d}_{\sigma }(\rho , \omega _{2n_{r}})\bigr\} . \end{aligned}$$

As \(\mathcal{\mathbf{F}}\) is strictly increasing, we have

$$\begin{aligned} \textsl{d}_{\sigma }\bigl(\omega _{2n_{r}}, [\mathcal{\mathbf{T}}\rho ]_{ \alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr)& < \textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \rho ) + {\L }\min \bigl\{ \textsl{d}_{\sigma }(\omega _{2n_{r} - 1}, \omega _{2n_{r}}), \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}} \rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \\ &\quad \textsl{d}_{\sigma }\bigl( \omega _{2n_{r} - 1}, [\mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}(\rho )}\bigr), \textsl{d}_{\sigma }( \rho , \omega _{2n_{r}})\bigr\} . \end{aligned}$$

By taking the limit as \(n \rightarrow \infty \) we get

$$ \textsl{d}_{\sigma }\bigl(\rho , [\mathcal{\mathbf{T}}\rho ]_{\alpha _{ \mathcal{\mathbf{T}}}(\rho )} \bigr) \leq 0. $$

Thus \(\rho \in [\mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}( \rho )}\). By a similar procedure we can prove that \(\rho \in [\mathcal{\mathbf{S}}\rho ]_{\alpha _{\mathcal{\mathbf{S}}}( \rho )}\). Hence \(\rho \in [\mathcal{\mathbf{T}}\rho ]_{\alpha _{\mathcal{\mathbf{T}}}( \rho )} \cap [\mathcal{\mathbf{S}}\rho ]_{\alpha _{ \mathcal{\mathbf{S}}}(\rho )}\). □

Theorem 2.2

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{S}}\), \(\mathcal{\mathbf{T}}\) be fuzzy mappings from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\). Suppose that for each \(\omega _{1} \in \mathcal{W}\), there exist \(\alpha _{\mathcal{\mathbf{S}}}(\omega _{1}), \alpha _{ \mathcal{\mathbf{T}}}(\textsl{y}) \in (0, 1]\) such that \([\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})}\), \([\mathcal{\mathbf{T}}\textsl{y}]_{\alpha _{ \mathcal{\mathbf{T}}}(\textsl{y})}\) are nonempty closed subsets of \(\mathcal{W}\). If there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\) and \(\Omega > 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})}, [\mathcal{\mathbf{T}} \omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) $$
(14)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }([\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{2})}) > 0\), then there exists a common α-fuzzy fixed point of \(\mathcal{\mathbf{S}}\) and \(\mathcal{\mathbf{T}}\).

Proof

By taking \({\L } = 0\) in Theorem 2.1 we get the proof. □

Corollary 2.1

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{T}}\) be a fuzzy mapping from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\). Suppose that for each \(\omega _{1} \in \mathcal{W}\), there exist \(\alpha _{\mathcal{\mathbf{T}}}(\omega _{1}), \alpha _{ \mathcal{\mathbf{T}}}(\omega _{2}) \in (0, 1]\) such that \([\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\), \([\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\) are nonempty closed subsets of \(\mathcal{W}\). If there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\), \(\Omega > 0\), and \({\L } \geq 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}, [\mathcal{\mathbf{T}} \omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) + {\L }\bigl(\textsl{M}( \omega _{1}, \omega _{2})\bigr) $$
(15)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }([\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{2})}) > 0\), where

$$ \begin{aligned} \textsl{M}(\omega _{1}, \omega _{2}) &= \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{1}, [\mathcal{\mathbf{T}} \omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, [\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{2})} \bigr),\\ &\quad \textsl{d}_{\sigma }\bigl(\omega _{1}, [ \mathcal{ \mathbf{T}}\omega _{2}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{2})}\bigr), \textsl{d}_{\sigma } \bigl(\omega _{2}, [ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})} \bigr)\bigr\} , \end{aligned} $$

then there exists an α-fuzzy fixed point of \(\mathcal{\mathbf{T}}\).

Proof

By taking \(\mathcal{\mathbf{S}} = \mathcal{\mathbf{T}}\) in Theorem 2.1 we get the proof. □

Corollary 2.2

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{T}}\) be a fuzzy mapping from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\). Suppose that for each \(\omega _{1} \in \mathcal{W}\), there exist \(\alpha _{\mathcal{\mathbf{T}}}(\omega _{1}), \alpha _{ \mathcal{\mathbf{T}}}(\omega _{2}) \in (0, 1]\) such that \([\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}\), \([\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\) are nonempty closed subsets of \(\mathcal{W}\). Assume there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\) and \(\Omega > 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})}, [\mathcal{\mathbf{T}} \omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) $$
(16)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }([\mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{2})}) > 0\). Then there exists an α-fuzzy fixed point of \(\mathcal{\mathbf{T}}\).

Proof

By taking \(\mathcal{\mathbf{S}} = \mathcal{\mathbf{T}}\) and \({\L } = 0\) in Theorem 2.1 we get the proof. □

Remark 2.2

(i):

Theorem 2.1 generalizes Theorem 2.1 of [39].

(ii):

Theorem 2.2 generalizes Theorem 6 of [40].

(iii):

Corollary 2.1 (resp., Corollary 2.2) generalizes Corollary 2.3 (resp., Corollary 2.4) of [39].

Corollary 2.3

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}} : \mathcal{W} \rightarrow \textsl{CLB}(\mathcal{W})\) be multivalued mappings. Assume that there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\), \(\Omega > 0\), and \({\L } \geq 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }( \mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{B}}\omega _{2}) \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) + {\L }\bigl(\textsl{M}(\omega _{1}, \omega _{2})\bigr) $$
(17)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }(\mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{B}}\omega _{2}) > 0\), where

$$ \textsl{M}(\omega _{1}, \omega _{2}) = \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{1}, \mathcal{\mathbf{A}}( \omega _{1})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, \mathcal{\mathbf{B}}(\omega _{2})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, \mathcal{\mathbf{B}}( \omega _{2})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, \mathcal{\mathbf{A}}(\omega _{1})\bigr)\bigr\} . $$

Then there is a common fixed point of \(\mathcal{\mathbf{A}}\) and \(\mathcal{\mathbf{B}}\).

Proof

Let \(\alpha : \mathcal{W} \rightarrow (0, 1]\) be an arbitrary mapping and define the mappings \(\mathcal{\mathbf{S, \mathbf{T}}} : \mathcal{W} \rightarrow \mathcal{\mathcal{\mathbf{F}}}(\mathcal{W})\) by

$$ \mathcal{\mathbf{S}}(\omega _{1}) (\mathcal{\mathbf{T}}) = \textstyle\begin{cases} \alpha & \text{if }\mathcal{\mathbf{T}} \in \mathcal{\mathbf{A}}\omega _{1}, \\ 0 & \text{if }\mathcal{\mathbf{T}} \notin \mathcal{\mathbf{A}}\omega _{1}, \end{cases} $$

and

$$ \mathcal{\mathbf{T}}(\omega _{1}) (\mathcal{\mathbf{T}}) = \textstyle\begin{cases} \alpha & \text{if }\mathcal{\mathbf{T}} \in \mathcal{\mathbf{B}}\omega _{1}, \\ 0 & \text{if }\mathcal{\mathbf{T}} \notin \mathcal{\mathbf{B}}\omega _{1}. \end{cases} $$

Then we obtain

$$ \begin{gathered}{} [\mathcal{\mathbf{S}}\omega _{1}]_{\alpha (\omega _{1})} = \bigl\{ \mathcal{ \mathbf{T}} : \mathcal{\mathbf{S}}(\omega _{1}) ( \mathcal{\mathbf{T}}) \geq \alpha \bigr\} = \mathcal{\mathbf{A}}\omega _{1} \quad \text{and} \\ [\mathcal{\mathbf{T}}\omega _{1}]_{\alpha ( \omega _{1})} = \bigl\{ \mathcal{\mathbf{T}} : \mathcal{\mathbf{T}}(\omega _{1}) ( \mathcal{ \mathbf{T}}) \geq \alpha \bigr\} = \mathcal{\mathbf{B}}\omega _{1}. \end{gathered} $$

Therefore we can apply Theorem 2.1 to get a fixed point \(\rho \in \mathcal{W}\) such that

$$ \rho \in [\mathcal{\mathbf{S}}\rho ]_{\alpha _{\mathcal{\mathbf{S}}}( \rho )} \cap [\mathcal{\mathbf{T}} \rho ]_{\alpha _{ \mathcal{\mathbf{T}}}(\rho )} = \mathcal{\mathbf{A}}\rho \cap \mathcal{\mathbf{B}}\rho . $$

 □

Corollary 2.4

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{A}}, \mathcal{\mathbf{B}} : \mathcal{W} \rightarrow \textsl{CLB}(\mathcal{W})\) be multivalued mappings. Assume there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\) and \(\Omega > 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }( \mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{B}}\omega _{2}) \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) $$
(18)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }(\mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{B}}\omega _{2}) > 0\). Then there exists a common fixed point of \(\mathcal{\mathbf{A}}\) and \(\mathcal{\mathbf{B}}\).

Proof

It suffices to take \({\L } = 0\) in Corollary 2.3. □

Corollary 2.5

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{A}} : \mathcal{W} \rightarrow \textsl{CLB}( \mathcal{W})\) be a multivalued mapping. Assume there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\), \(\Omega > 0\), and \({\L } \geq 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }( \mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{A}}\omega _{2}) \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) + {\L }\bigl(\textsl{M}(\omega _{1}, \omega _{2})\bigr) $$
(19)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }(\mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{A}}\omega _{2}) > 0\), where

$$ \textsl{M}(\omega _{1}, \omega _{2}) = \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{1}, \mathcal{\mathbf{A}}( \omega _{1})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, \mathcal{\mathbf{A}}(\omega _{2})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{1}, \mathcal{\mathbf{A}}( \omega _{2})\bigr), \textsl{d}_{\sigma }\bigl( \omega _{2}, \mathcal{\mathbf{A}}(\omega _{1})\bigr)\bigr\} . $$

Then there exists a fixed point of \(\mathcal{\mathbf{A}}\).

Proof

Take \(\mathcal{\mathbf{A}} = \mathcal{\mathbf{B}}\) in Corollary 2.3. □

Corollary 2.6

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\mathcal{\mathbf{A}} : \mathcal{W} \rightarrow \textsl{CLB}( \mathcal{W})\) be a multivalued mapping. Assume there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\) and \(\Omega > 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }( \mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{A}}\omega _{2}) \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) $$
(20)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }(\mathcal{\mathbf{A}}\omega _{1}, \mathcal{\mathbf{A}}\omega _{2}) > 0\). Then there exists a fixed point of \(\mathcal{\mathbf{A}}\).

Proof

Take \(\mathcal{\mathbf{A}} = \mathcal{\mathbf{B}}\) and \({\L } = 0\) in Corollary 2.3. □

Remark 2.3

(i):

Corollary 2.3 generalizes Corollary 2.5 of [39].

(ii):

Corollary 2.4 generalizes Corollary 2.6.

(iii):

Corollary 2.5 (resp., Corollary 2.6) generalizes Corollary 2.7 (resp., Corollary 2.8) of [39].

We further suppose that \(\hat{\mathcal{\mathbf{T}}}\) is a multivalued mapping induced by the fuzzy mapping \(\mathcal{\mathbf{T}} : \mathcal{W} \rightarrow \Gamma (\mathcal{W})\), that is,

$$ \hat{\mathcal{\mathbf{T}}}(\omega _{1}) (\mathcal{\mathbf{T}}) = \Bigl\{ \mu \in \mathcal{W} : \mathcal{\mathbf{T}}(\omega _{1}) (\mu ) = \max_{ \textsl{t} \in \mathcal{W}} \mathcal{\mathbf{T}}(\omega _{1}) ( \textsl{t})\Bigr\} . $$

Lemma 2.2

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, \(\mu \in \mathcal{W}\), and let \(\mathcal{\mathbf{T}}\) be a fuzzy mapping from \(\mathcal{W}\) into \(\Gamma (\mathcal{W})\) such that \(\hat{\mathcal{\mathbf{T}}}(\omega _{1})\) is a nonempty compact set for all \(\omega _{1} \in \mathcal{W}\). Then \(\mu \in \hat{\mathcal{\mathbf{T}}}(\mu )\) if and only if

$$ \mathcal{\mathbf{T}}(\mu ) (\mu ) \geq \mathcal{\mathbf{T}}(\mu ) ( \omega _{1}) $$

for all \(\omega _{1} \in \mathcal{W}\).

Proof

Suppose that \(\mu \in \hat{\mathcal{\mathbf{T}}}(\mu )\). Then

$$ \hat{\mathcal{\mathbf{T}}}(\mu ) (\mu ) = \max_{\omega _{1} \in \mathcal{W}} \mathcal{ \mathbf{T}}(\mu ) (\omega _{1}). $$

This implies that

$$ \hat{\mathcal{\mathbf{T}}}(\mu ) (\mu ) \geq \mathcal{\mathbf{T}}(\mu ) ( \omega _{1})\quad \text{for all } \omega _{1} \in \mathcal{W}. $$

Conversely, suppose that

$$ \hat{\mathcal{\mathbf{T}}}(\mu ) (\mu ) \geq \mathcal{\mathbf{T}}(\mu ) ( \omega _{1}) \quad \text{for all } \omega _{1} \in \mathcal{W}. $$

Then by the same steps we can show that \(\mu \in \hat{\mathcal{\mathbf{T}}}(\mu )\). □

Corollary 2.7

Let \((\mathcal{W}, \textsl{d}_{\sigma })\) be a complete controlled metric space, and let \(\hat{\mathcal{\mathbf{S}}}, \hat{\mathcal{\mathbf{T}}} : \mathcal{W} \rightarrow \Gamma (\mathcal{W})\) be fuzzy mappings such that for each \(\omega _{1} \in \mathcal{W}\), \(\hat{\mathcal{\mathbf{S}}}(\omega _{1})\) and \(\hat{\mathcal{\mathbf{T}}}(\omega _{1})\) are nonempty closed subsets of \(\mathcal{W}\). Assume there exist \(\mathcal{\mathbf{F}} \in \mathcal{F}\), \(\Omega > 0\), and \({\L } \geq 0\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl( \hat{\mathcal{\mathbf{S}}}(\omega _{1}), \hat{\mathcal{\mathbf{T}}}( \omega _{2})\bigr) \leq \mathcal{\mathbf{F}}\bigl(\textsl{d}_{\sigma }( \omega _{1}, \omega _{2})\bigr) + {\L }\bigl(\textsl{M}( \omega _{1}, \omega _{2})\bigr) $$
(21)

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }(\hat{\mathcal{\mathbf{S}}}(\omega _{1}), \hat{\mathcal{\mathbf{T}}}(\omega _{2})) > 0\), where

$$ \textsl{M}(\omega _{1}, \omega _{2}) = \min \bigl\{ \textsl{d}_{\sigma }\bigl( \omega _{1}, \hat{\mathcal{ \mathbf{S}}}(\omega _{1})\bigr), \textsl{d}_{ \sigma }\bigl(\omega _{2}, \hat{\mathcal{\mathbf{T}}}(\omega _{2})\bigr), \textsl{d}_{\sigma }\bigl(\omega _{1}, \hat{\mathcal{\mathbf{T}}}( \omega _{2})\bigr), \textsl{d}_{\sigma }\bigl(\omega _{2}, \hat{\mathcal{\mathbf{S}}}(\omega _{1})\bigr) \bigr\} . $$

Then there exists \(\mu \in \mathcal{W}\) such that \(\mathcal{\mathbf{S}}(\mu )(\mu ) \geq \mathcal{\mathbf{S}}(\mu )( \omega _{1})\) and \(\mathcal{\mathbf{T}}(\mu )(\mu ) \geq \mathcal{\mathbf{T}}(\mu )( \omega _{1})\) for all \(\omega _{1} \in \mathcal{W}\).

Proof

By Corollary 2.3 there exists \(\mu \in \mathcal{W}\) such that \(\mu \in \hat{\mathcal{\mathbf{S}}}(\mu ) \cap \hat{\mathcal{\mathbf{T}}}(\mu )\). Then from Lemma 2.2 we get

$$ \mathcal{\mathbf{S}}(\mu ) (\mu ) \geq \mathcal{\mathbf{S}}(\mu ) ( \omega _{1})\quad \text{and}\quad \mathcal{\mathbf{T}}(\mu ) (\mu ) \geq \mathcal{\mathbf{T}}(\mu ) (\omega _{1}) $$

for all \(\omega _{1} \in \mathcal{W}\). □

Example 2.1

Let \(\mathcal{W} = [0, 1]\). Define \(\textsl{d}_{\sigma } : \mathcal{W} \times \mathcal{W} \rightarrow [0, \infty )\) by

$$ \textsl{d}_{\sigma }(\omega _{1}, \omega _{2}) = \vert \omega _{1} - \omega _{2} \vert . $$

Then \((\mathcal{W}, \textsl{d}_{\sigma })\) is a complete controlled metric space, where \(\sigma : \mathcal{W} \times \mathcal{W} \rightarrow [1, \infty )\) is defined by

$$ \sigma (\omega _{1}, \omega _{2}) = \textstyle\begin{cases} 1 & \text{if }\omega _{1}, \omega _{2} \in [0, 0.5), \\ \omega _{1} + \omega _{2} + 2 &\text{otherwise.} \end{cases} $$

For \(\alpha \in [0, 1)\) and \(\omega _{1} \in \mathcal{W}\), define the mappings \(\mathcal{\mathbf{S}}, \mathcal{\mathbf{T}} : \mathcal{W} \rightarrow \Gamma (\mathcal{W})\) by

$$ \mathcal{\mathbf{S}}(\omega _{1}) (\mathcal{\mathbf{T}}) = \textstyle\begin{cases} \alpha & \text{if }0 \leq \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{50}, \\ \frac{\alpha }{2} & \text{if }\frac{\omega _{1}}{50} < \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{40}, \\ \frac{\alpha }{3} & \text{if }\frac{\omega _{1}}{40} < \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{30}, \\ \frac{\alpha }{4} & \text{if }\frac{\omega _{1}}{30} < \mathcal{\mathbf{T}} \leq 1, \end{cases} $$

and

$$ \mathcal{\mathbf{T}}(\omega _{1}) (\mathcal{\mathbf{T}}) = \textstyle\begin{cases} \alpha & \text{if }0 \leq \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{20}, \\ \frac{\alpha }{4} & \text{if }\frac{\omega _{1}}{20} < \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{10}, \\ \frac{\alpha }{5} & \text{if }\frac{\omega _{1}}{10} < \mathcal{\mathbf{T}} \leq \frac{\omega _{1}}{5}, \\ \frac{\alpha }{7} & \text{if }\frac{\omega _{1}}{5} < \mathcal{\mathbf{T}} \leq 1, \end{cases} $$

so that

$$ [\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})} = \biggl[0, \frac{\omega _{1}}{50}\biggr] \quad \text{and}\quad [ \mathcal{\mathbf{T}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{T}}}( \omega _{1})} = \biggl[0, \frac{\omega _{1}}{20}\biggr]. $$

Let \(\mathcal{\mathbf{F}}(\mathcal{\mathbf{T}}) = \ln ( \mathcal{\mathbf{T}})\). Then there exists \(\Omega \in (0, \ln \frac{|\omega _{2} - \omega _{1}|}{|\omega _{2} - \frac{\omega _{1}}{2}|^{\frac{1}{50}}})\) such that

$$ \Omega + \mathcal{\mathbf{F}}(\textsl{H}_{\sigma }\bigl([ \mathcal{ \mathbf{S}}\omega _{1}]_{\alpha _{\mathcal{\mathbf{S}}}( \omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{\alpha _{ \mathcal{\mathbf{T}}}(\omega _{2})}\bigr) \leq \mathcal{\mathbf{F}}\bigl( \textsl{d}_{\sigma }(\omega _{1}, \omega _{2})\bigr) $$

for all \(\omega _{1}, \omega _{2} \in \mathcal{W}\) with \(\textsl{H}_{\sigma }([\mathcal{\mathbf{S}}\omega _{1}]_{\alpha _{ \mathcal{\mathbf{S}}}(\omega _{1})}, [\mathcal{\mathbf{T}}\omega _{2}]_{ \alpha _{\mathcal{\mathbf{T}}}(\omega _{2})}) > 0\). Hence all the axioms of Theorem 2.1 are satisfied, and therefore \(0 \in [\mathcal{\mathbf{S}}0]_{\alpha } \cap [\mathcal{\mathbf{T}}0]_{ \alpha }\).

3 Conclusion

In this work, we introduced the concept of fuzzy mappings in a more general space, called a controlled metric space. Further, we derived the existence of common α-fuzzy fixed points for two fuzzy mappings under generalized almost \(\mathcal{\mathbf{F}}\)-contractions in the setting of controlled metric spaces. Our results generalize many well-known results in the literature. For justification of the obtained results, we gave an illustrative example.