1 Introduction

The notable character of inequalities in the growth and enlargement of mathematics is well known. In several areas of science and technology, mathematical inequalities have effectively spread their impact and they are now recognized and imparted as some of the most useful mathematical disciplines. Information theory, economics, engineering, and other fields have benefited from their use (see [1, 2]). Inequalities and their affiliated theory have rapidly expanded as a result of this applicability, leading to the establishment of various new and generalized forms of inequalities. For illustration, the Hermite–Hadamard inequality, Newton’s inequality, Simpson’s inequality, Jensen’s inequality, and the Jensen–Mercer inequality (see [25]) are some of the most well-known identities among scientists. Currently, scientists are specifically interested in generalized inequalities that include many of the previously stated variants in one version or another. We selected Newton’s and Simpson’s inequalities for convex functions in generalized form.

The relationship between inequalities and the theory of convex functions was discovered to be extremely strong. Convex functions play a notable role in the fields of both theoretical and applied studies. The study of convex functions always presents stunning and magnificent sights of the beauty in advanced mathematics. Mathematicians always put potential in this direction as a result, discover and survey a large variety of results that are beneficial and remarkable for applications. This method is strong in relationship with countless issues, most of which are found in both the basic and applied sciences. Convexity also has a major effect on our daily life through countless implementations in medicine, industry, business, and art. Due to the wide range of implementations, it is among the most advanced branches of mathematical modeling. Convex functions are the topic of research in a number of disciplines due to their applicability in inequality theory and are defined as:

$$ \psi \bigl(\kappa \varkappa + (1- \kappa )\varkappa _{1}\bigr)\leq \kappa \psi ( \varkappa )+(1- \kappa ) \psi ( \varkappa _{1}), $$
(1)

where \(\psi :[ \mathfrak{a},\mathfrak{b}]\subseteq \Re \to \Re \) is a convex function that holds for all \(\varkappa ,\varkappa _{1}\in [ \mathfrak{a}, \mathfrak{b}]\) and \(\kappa \in [0,1]\).

Additional information of different types of convexity and their contribution to inequalities can be found in [1, 2].

Newton’s inequality is defined as:

Theorem 1.1

([4])

Consider \(\psi :[\mathfrak{a}, \mathfrak{b}]\rightarrow \mathbb{R}\) is a four-times continuously differentiable mapping, and

$$\begin{aligned} \bigl\Vert \psi ^{(4)} \bigr\Vert _{\infty}= \sup_{\varkappa \in (\mathfrak{a}, \mathfrak{b})} \bigl\vert \psi ^{(4)}(\varkappa ) \bigr\vert < \infty , \end{aligned}$$
(2)

then, the following estimation holds:

$$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[ \psi (\mathfrak{a})+3\psi \biggl( \frac{2\mathfrak{a}+ \mathfrak{b}}{3} \biggr)+3\psi \biggl( \frac{\mathfrak{a}+ 2\mathfrak{b}}{3} \biggr)+ \psi ( \mathfrak{b}) \biggr] -\frac{1}{ \mathfrak{b}-\mathfrak{a}} \int _{\mathfrak{a}}^{ \mathfrak{b}} \psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq \frac{1}{6480} \bigl\Vert \psi ^{(4)} \bigr\Vert _{\infty}( \mathfrak{b}- \mathfrak{a})^{{4}}. \end{aligned}$$

The results of Newton-type inequalities involving convex mappings have been looked at by various authors because convex theory is an excellent technique to deal with a sizable number of issues from various mathematical disciplines. In the papers [4, 6], based on differentiable convex mapping, new modifications of Newton-type inequalities were discovered. Furthermore, the authors presented Newton’s inequality for convex functions in quantum calculus [7, 8]. Iftikhar et al. in [9], presented a novel Newton-type inequality for functions with the local fractional derivative, which is generalized and convex.

Simpson’s inequality is explained as:

Theorem 1.2

([3])

Suppose that \(\psi :[\mathfrak{a}, \mathfrak{b}]\rightarrow \mathbb{R}\) is a four-times continuously differentiable mapping on \((\mathfrak{a}, \mathfrak{b})\), and let \(\| \psi ^{(4)}\|_{\infty}=\sup_{\varkappa \in (\mathfrak{a}, \mathfrak{b})}| \psi ^{(4)}(\varkappa )|<\infty \), then the following inequality holds:

$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[ \frac{ \psi (\mathfrak{a})+ \psi ( \mathfrak{b})}{2}+{2} \psi \biggl(\frac{\mathfrak{a}+ \mathfrak{b}}{2} \biggr) \biggr] - \frac{1}{ \mathfrak{b}-\mathfrak{a}} \int _{\mathfrak{a}}^{ \mathfrak{b}} \psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq \frac{1}{2880} \bigl\Vert \psi ^{(4)} \bigr\Vert _{\infty}( \mathfrak{b}- \mathfrak{a})^{4}. \end{aligned}$$

The results of Simpson-type inequalities for convex mappings have been looked at by various authors because convex theory is an excellent technique to deal with a sizable number of issues from various mathematical disciplines. In the papers [10, 11], based on differentiable convex mapping, new modifications of Simpson-type inequalities are discovered. Furthermore, these inequalities were also the subject of some publications [12, 13].

The introduction of new approaches and the generalization of integral inequalities using fractional integral operators resulted in a revolution in inequality theory. For some recent results see [14, 15]. Among the many fractional integrals that have emerged, the Riemann–Liouville fractional integral has been widely considered as a result of its uses in numerous fields of science.

Definition 1.1

([16])

For an integrable function ψ on \([\mathfrak{a},\mathfrak{b} ] \), the left and right Riemann–Liouville fractional integrals of order \(\varpi >0\) are defined as:

$$\begin{aligned}& J_{\mathfrak{a}^{+}}^{\varpi}\psi ( \varkappa ) = \frac{1}{\Gamma ( \varpi ) } \int _{\mathfrak{a}}^{\varkappa} ( \varkappa -\kappa ) ^{\varpi -1} \psi ( \kappa ) \,d\kappa ,\quad {\varkappa}>\mathfrak{a}, \\& J_{ \mathfrak{b}^{-}}^{\varpi}\psi ( \varkappa ) = \frac{1}{\Gamma ( \varpi ) } \int _{\varkappa}^{\mathfrak{b}} ( \kappa -\varkappa ) ^{\varpi -1} \psi ( \kappa ) \,d\kappa ,\quad \varkappa < \mathfrak{b}, \end{aligned}$$

where \(\Gamma (\varpi )\) is the Gamma function.

Let \(0<\zeta _{1}\leq \zeta _{2}\leq \cdots\leq \zeta _{n}\) and let \(\rho = (\rho _{1},\rho _{2},\ldots,\rho _{\epsilon} )\) be nonnegative weights such that \(\sum_{\lambda =1}^{\epsilon} \rho _{\lambda}=1\). The famous Jensen inequality [1] in the literature states that if ψ is a convex function on the interval \([ \mathfrak{a},\mathfrak{b} ]\), then

$$ \psi \Biggl(\sum_{\lambda =1}^{\epsilon} \rho _{\lambda} \zeta _{ \lambda} \Biggr)\leq \Biggl( \sum _{\lambda =1}^{\epsilon} \rho _{ \lambda} \psi ( \zeta _{\lambda} ) \Biggr), $$
(3)

for all \(\zeta _{\lambda}\in [ \mathfrak{a},\mathfrak{b}]\), \(\rho _{\lambda}\in [ 0,1 ] \) and \(( \lambda =1,2,\ldots,\epsilon ) \).

In 2003, a new variant of Jensen’s inequality was introduced by Mercer [17] as:

If ψ is a convex function on \([ \mathfrak{a}, \mathfrak{b} ]\), then

$$ \psi \Biggl( \mathfrak{a}+\mathfrak{b}-\sum _{\lambda =1}^{\epsilon} \rho _{\lambda} \zeta _{\lambda} \Biggr) \leq \psi ( \mathfrak{a} ) + \psi ( \mathfrak{b} ) - \underset{\lambda =1}{\overset{\epsilon}{\sum }} \rho _{\lambda} \psi ( \zeta _{\lambda} ), $$
(4)

holds for all \(\zeta _{\lambda}\in [ \mathfrak{a},\mathfrak{b} ]\), \(\rho _{\lambda}\in [ 0,1 ] \) and \(( \lambda =1,2,\ldots,\epsilon ) \). It is one of the key inequalities that helps to extract bounds for useful distances in information theory [5, 18, 19].

Definition 1.2

([20])

Let \(\varrho =(\varrho _{1},\varrho _{2},\ldots,\varrho _{{\lambda}})\) and \(\mathfrak{y}=(\mathfrak{y}_{1},\mathfrak{y}_{2},\ldots,\mathfrak{y}_{{ \lambda}})\) be two λ-tuples of real numbers with their arrangements \(\varrho _{{\lambda}}\leq \varrho _{{\lambda}-1}\leq\cdots\leq \varrho _{1}\), \(\mathfrak{y}_{{\lambda}}\leq \mathfrak{y}_{{\lambda}-1}\leq\cdots\leq \mathfrak{y}_{1}\), then ϱ is said to majorize \(\mathfrak{y}\) (or \(\mathfrak{y}\) is said to be majorized by ϱ, symbolically \(\mathfrak{y}\prec \varrho \)), if:

$$\begin{aligned} \sum_{\Theta =1}^{{s}}\mathfrak{y}_{[\Theta ]} \leq \sum_{ \Theta =1}^{{s}}\varrho _{[\Theta ]}\quad \text{for } { s} =1,2,\ldots,{\lambda}-1, \end{aligned}$$

and:

$$\begin{aligned} \sum_{\Theta =1}^{{\lambda}}\mathfrak{y}_{[\Theta ]}= \sum_{\Theta =1}^{{ \lambda}}\varrho _{[\Theta ]}. \end{aligned}$$
(5)

It is an inequality in elementary algebra that generalizes Jensen’s inequality for convex real-valued functions defined on an interval of the real line. Niezgoda [21] utilized the idea of majorization and extended the Jensen–Mercer inequality given as follows:

Theorem 1.3

Let \((\varkappa _{{\mathfrak{i}}{\Theta}})\) be an \(\epsilon \times \lambda \) real matrix and \(\theta = (\theta _{1},\ldots,\theta _{\lambda})\) be a λ-tuple such that \(\theta _{\Theta},\varkappa _{\mathfrak{i}\Theta}\in I\) for all \({\mathfrak{i}}= 1,2,\ldots,{\epsilon}\), \(\Theta \in \{ 1,\ldots,\lambda \}\) and ψ be a continuous convex function defined on an interval \(I\subset \mathbb{R}\). Furthermore, let \(\sigma _{\mathfrak{i}}\geq 0\) for \(\mathfrak{i} = 1,2,\ldots,\epsilon \) with \(\sum_{\mathfrak{i}=1}^{\epsilon}\sigma _{\mathfrak{i}}=1\). If θ majorizes every row of \((\varkappa _{\mathfrak{i}\Theta} )\), then:

$$\begin{aligned} \psi \Biggl(\sum_{\Theta =1}^{\lambda} \theta _{\Theta}-\sum_{\Theta =1}^{ \lambda -1} \sum_{{\mathfrak{i}}=1}^{\epsilon}\sigma _{ \mathfrak{i}} \varkappa _{{\mathfrak{i}}{\Theta}} \Biggr) \leq \sum_{ \Theta =1}^{\lambda} \psi (\theta _{\Theta})-\sum_{\Theta =1}^{ \lambda -1} \sum_{{\mathfrak{i}}=1}^{\epsilon}\sigma _{ \mathfrak{i}} \psi (\varkappa _{{\mathfrak{i}}{\Theta}}). \end{aligned}$$
(6)

For researchers working with various integrals or convex functions, the theory of majorization provides a unique opportunity. Researchers from a variety of disciplines have been paying close attention to it. Numerous majorization ideas have been recreated and applied to various fields of study, including economics, graph theory, and optimization. The theory of majorization is a very important topic in mathematics; Olkin and Marshall’s book [22] is a remarkable and comprehensive reference on the subject. The concept of majorization, for instance, is a powerful component for converting nonconvex complicated constrained optimization problems with matrix-valued variables into simple problems with scalar variables that can be quickly resolved [23, 24]. Majorization theory can be traced back to some modern applications in signal processing and communication [25]. One can see some recent results related to majorization in [26, 27].

In this paper, the main focus is on majorization-type results for Newton–Simpson-type inequalities involving convex functions. To extend majorization the Riemann–Liouville fractional integral is used for both Simpson- and Newton-type inequalities. Inequalities of the classical Mercer type and their different versions are created in the case when we have \(\varpi =1\) and \({\lambda}=2\) in the obtained results. Finally, the obtained outcomes were backed up by diminished outcomes and implementations.

Here, \(\boldsymbol{\Omega}=(\Omega _{1}, \Omega _{2},\ldots,\Omega _{{\lambda}})\), \(\mathbf{a}=(\mathfrak{a}_{1},\mathfrak{a}_{2},\ldots, \mathfrak{a}_{{\lambda}})\) and \(\mathbf{b}=(\mathfrak{b}_{1},\mathfrak{b}_{2},\ldots, \mathfrak{b}_{{\lambda}})\) are three λ-tuples that will be used throughout the paper.

2 Main results

New Newton–Simpson-type Lemma’s via majorization are presented in this section.

Lemma 2.1

Let \(\Omega _{\Theta}, \mathfrak{a}_{\Theta}, \mathfrak{b}_{\Theta}\in I\) for all \(\Theta \in \{1,\ldots, {\lambda}\}\) be three λ-tuples such that \(\mathfrak{a}_{{\lambda}}> \mathfrak{b}_{{\lambda}}\), \(\varpi >0\) and ψ be a differentiable function on an interval \(I\subset \mathbb{R}\). If \(\psi ^{\prime}\in L(I)\) and Ω majorizes both a and b, then:

$$\begin{aligned} &\frac{1}{8} \Biggl[\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{ \Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \\ &\quad =\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{0}^{1}\Phi ^{\varpi}(\kappa )\psi ' \Biggl(\sum_{ \Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa , \end{aligned}$$

where \(\Phi ^{\varpi}(\kappa )\) is defined by

$$ \Phi ^{\varpi}(\kappa )= \textstyle\begin{cases} \kappa ^{\varpi}-\frac{1}{8} , & \textit{if }t\in [0,\frac{1}{3} ), \\ \kappa ^{\varpi}-\frac{1}{2} , & \textit{if }t\in [\frac{1}{3},\frac{2}{3} ), \\ \kappa ^{\varpi}-\frac{7}{8} , & \textit{if }t\in [\frac{2}{3},1 ]. \end{cases} $$

Proof

Let us denote

$$\begin{aligned} \mathbb{I}= \int _{0}^{1}\Phi ^{\varpi}(\kappa )\psi ' \Biggl(\sum_{ \Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa . \end{aligned}$$

Now, splitting the integral, we have

$$\begin{aligned} \mathbb{I}&= \int _{0}^{\frac{1}{3}} \biggl(\kappa ^{\varpi}- \frac{1}{8} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{ \Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &\quad{} + \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(\kappa ^{\varpi}- \frac{1}{2} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{ \Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &\quad{} + \int _{\frac{2}{3}}^{1} \biggl(\kappa ^{\varpi}- \frac{7}{8} \biggr) \psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa ) \mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &=\mathbb{I}_{1}+\mathbb{I}_{2}+\mathbb{I}_{3}. \end{aligned}$$

Using integration by parts

$$\begin{aligned}& \begin{aligned} \mathbb{I}_{1}&= \int _{0}^{\frac{1}{3}} \biggl(\kappa ^{\varpi}- \frac{1}{8} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{ \Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &= \biggl( \biggl(\frac{1}{3} \biggr)^{\varpi}- \frac{1}{8} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} (\frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} ) )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} + \biggl(\frac{1}{8} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}{\mathfrak{b}}_{\Theta} )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \int _{0}^{{\frac{1}{3}}}\kappa ^{\varpi -1}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{ \Theta} \bigr) \Biggr)\,d\kappa, \end{aligned} \\& \begin{aligned} \mathbb{I}_{2}&= \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl(\kappa ^{ \varpi}- \frac{1}{2} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{ \Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &= \biggl( \biggl(\frac{2}{3} \biggr)^{\varpi}- \frac{1}{2} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} (\frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} ) )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad {}- \biggl( \biggl( \frac{1}{3} \biggr)^{\varpi}-\frac{1}{2} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} (\frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} ) )}{\sum_{\Theta =1}^{{\lambda}-1} (\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \int _{{\frac{1}{3}}}^{{\frac{2}{3}}}\kappa ^{ \varpi -1}\psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa, \end{aligned} \\& \begin{aligned} \mathbb{I}_{3}&= \int _{\frac{2}{3}}^{1} \biggl(\kappa ^{\varpi}- \frac{7}{8} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{ \Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &=- \biggl( \biggl(\frac{2}{3} \biggr)^{\varpi}- \frac{7}{8} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} (\frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} ) )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} + \biggl(\frac{1}{8} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \int _{{\frac{2}{3}}}^{1}\kappa ^{\varpi -1}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{ \Theta} \bigr) \Biggr)\,d\kappa \end{aligned} \end{aligned}$$

and adding \(\mathbb{I}_{1}\), \(\mathbb{I}_{2}\), and \(\mathbb{I}_{3}\) we have

$$\begin{aligned} &{\mathbb{I}}= \frac{1}{8{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b} _{\Theta}-\mathfrak{a}_{\Theta})}} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl( \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta} -\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad{}- \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \int _{0}^{1}\kappa ^{\varpi -1}\psi \Biggl(\sum_{\Theta =1}^{{ \lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa . \end{aligned}$$
(7)

Now, substituting \(\varkappa =\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1}(\kappa \mathfrak{a}_{\Theta}+(1-\kappa ) \mathfrak{b}_{\Theta})\) we have

$$\begin{aligned} &{\mathbb{I}}= \frac{1}{8{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})}} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad{}- \frac{\varpi}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi +1} } \int _{\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\mathfrak{b}_{\Theta}}^{\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta}} \psi (\varkappa ) \Biggl[ \varkappa - \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr]^{\varpi -1}\,d\varkappa . \end{aligned}$$
(8)

To apply the definition of a fractional integral in (8), we need to show that

$$\begin{aligned} \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta}\leq \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta}. \end{aligned}$$

As

$$\begin{aligned} &\mathfrak{a}_{{\lambda}}> \mathfrak{b}_{{\lambda}}, \\ & \mathfrak{a}_{{\lambda}}- \mathfrak{b}_{{\lambda}}>0. \end{aligned}$$
(9)

Furthermore, \(\mathbf{a}\prec \boldsymbol{\Omega} \) and \(\mathbf{b}\prec \boldsymbol{\Omega}\). Then,

$$\begin{aligned} &\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta}+ \mathfrak{b}_{{ \lambda}}=\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta}+ \mathfrak{a}_{{\lambda}}, \\ &\sum_{\Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta}- \sum_{\Theta =1}^{{ \lambda}-1}\mathfrak{a}_{\Theta}= \mathfrak{a}_{{\lambda}}- \mathfrak{b}_{{\lambda}} \end{aligned}$$
(10)

and using (9) in (10), we have

$$\begin{aligned} & \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{a}_{\Theta}>0, \\ & {-} \sum_{\Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta}< - \sum_{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \end{aligned}$$
(11)

and adding \(\sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}\) to both sides of (11) we have

$$\begin{aligned} \sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta}< \sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta}. \end{aligned}$$
(12)

Now, (8) implies

$$\begin{aligned} &{\mathbb{I}}= \frac{1}{8\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad{} + 3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad{} - \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi +1}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr). \end{aligned}$$
(13)

Multiplying (13) by \(\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{ \Theta})\), we obtain the required equality. □

Throughout the paper we take \(\mathfrak{a}_{1}=\mathfrak{a}\) and \(\mathfrak{b}_{1}=\mathfrak{b}\) to enhance the beauty of the paper.

Remark 1

If we take \({\lambda}=2\) in Lemma 2.1, then we have

$$\begin{aligned} &\frac{1}{8} \biggl[\psi (\Omega _{1}+ \Omega _{2}-\mathfrak{a})+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b}) \biggr]- \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b}) \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}\Phi ^{\varpi}(\kappa ) \psi ' \bigl(\Omega _{1}+\Omega _{2}- \bigl(\kappa \mathfrak{a}+(1-\kappa ) \mathfrak{b}\bigr) \bigr)\,d\kappa , \end{aligned}$$
(14)

which is a new equality in the literature.

  • If we take \(\varpi =1\) in (14), then we have

    $$\begin{aligned} &\quad \frac{1}{8} \biggl\{ \psi (\Omega _{1}+\Omega _{2}-\mathfrak{a})+3\psi \biggl(\Omega _{1}+\Omega _{2}- \biggl( \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \biggr) \\ &\quad \quad{} + 3\psi \biggl(\Omega _{1}+\Omega _{2}- \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \biggr)+\psi (\Omega _{1}+ \Omega _{2}-\mathfrak{b}) \biggr\} \\ &\quad \quad {}- \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{(\Omega _{1}+\Omega _{2}- \mathfrak{b})}^{(\Omega _{1}+\Omega _{2}-\mathfrak{a})} \psi ( \varkappa )\,d\varkappa \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}\Phi (\kappa )\psi '\bigl( \Omega _{1}+\Omega _{2}-\bigl( \kappa \mathfrak{a}+(1-\kappa )\mathfrak{b}\bigr)\bigr)\,d\kappa , \end{aligned}$$

    which is a new equality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (14)

    $$\begin{aligned} &\frac{1}{8} \biggl[\psi (\mathfrak{a})+3\psi \biggl( \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) +3\psi \biggl(\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr)+\psi ( \mathfrak{b}) \biggr]-\frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{ \mathfrak{a}}^{\mathfrak{b}}\psi (\varkappa )\,d\varkappa \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}\Phi (\kappa )\psi '\bigl( \kappa \mathfrak{b}+(1-\kappa )\mathfrak{a}\bigr)\,d\kappa , \end{aligned}$$

    which is a result for generalized convexity and classical convex functions in the literature, respectively.

Lemma 2.2

Let \(\Omega _{\Theta}, \mathfrak{a}_{\Theta}, \mathfrak{b}_{\Theta}\in I\) for all \(\Theta \in \{1,\ldots, {\lambda}\}\), \(\mathfrak{a}_{{\lambda}}> \mathfrak{b}_{{\lambda}}\), \(\varpi >0\) and ψ be a differentiable function on an interval \(I\subset \mathbb{R}\). If \(\psi ^{\prime}\in L(I)\) and Ω majorizes both a and b, then:

$$\begin{aligned} &\frac{1}{6} \Biggl[\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{ \Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta} \Biggr)+4 \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \\ &\quad =\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{0}^{1}p^{\varpi}(\kappa )\psi ' \Biggl(\sum_{\Theta =1}^{{ \lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa , \end{aligned}$$

where \(p^{\varpi}(\kappa )\) is defined by

$$ p^{\varpi}(\kappa )= \textstyle\begin{cases} \kappa ^{\varpi}-\frac{1}{6} , & \textit{if }\kappa \in [0,\frac{1}{2} ), \\ \kappa ^{\varpi}-\frac{5}{6} , & \textit{if }\kappa \in [\frac{1}{2},1 ]. \end{cases} $$
(15)

Proof

We can write

$$\begin{aligned} \mathbb{I}= \int _{0}^{1}p^{\varpi}(\kappa )\psi ' \Biggl(\sum_{\Theta =1}^{{ \lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\,d\kappa . \end{aligned}$$

Now, using the definition of our kernel, we obtain

$$\begin{aligned} {\mathbb{I}}&= \int _{0}^{\frac{1}{2}} \biggl(\kappa ^{ \varpi}- \frac{1}{6} \biggr)\psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{ \Theta}+(1- \kappa )\mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &\quad{} + \int _{\frac{1}{2}}^{1} \biggl(\kappa ^{\varpi}- \frac{5}{6} \biggr) \psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa ) \mathfrak{b}_{\Theta}\bigr) \Biggr)\,d\kappa \\ &=\mathbb{I}_{1}+\mathbb{I}_{2}. \end{aligned}$$

Where we have, by using integration by parts,

$$\begin{aligned} \mathbb{I}_{1}&= \biggl(\frac{1}{2}^{\varpi}- \frac{1}{6} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})}+ \biggl(\frac{1}{6} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} )}{ \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl( \int _{0}^{\frac{1}{2}}\kappa ^{\varpi -1}\psi \Biggl(\sum_{ \Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\, d {\kappa} \Biggr) \end{aligned}$$

and

$$\begin{aligned} \mathbb{I}_{2}&= \biggl(\frac{1}{6} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} - \biggl(\frac{1}{2}^{\varpi}- \frac{5}{6} \biggr) \frac{\psi (\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl( \int _{\frac{1}{2}}^{1}\kappa ^{\varpi -1}\psi \Biggl(\sum_{ \Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1}\bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\, d {\kappa} \Biggr) \end{aligned}$$

and adding \(\mathbb{I}_{1}\) and \(\mathbb{I}_{2}\), we have

$$\begin{aligned} {\mathbb{I}}&= \frac{1}{6\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta})} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr) \\ &\quad {}+4 \psi \Biggl( \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad{} - \frac{\varpi}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl( \int _{0}^{1}\kappa ^{\varpi -1}\psi \Biggl(\sum_{\Theta =1}^{{ \lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl( \kappa \mathfrak{a}_{\Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr)\, d {\kappa} \Biggr). \end{aligned}$$
(15)

Now, Substituting \(\varkappa =\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1}(\kappa \mathfrak{a}_{\Theta}+(1-\kappa ) \mathfrak{b}_{\Theta})\) we have

$$\begin{aligned} {\mathbb{I}}&= \frac{1}{6\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr) \\ &\quad {}+4\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] - \frac{\varpi}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi +1} } \\ &\quad {}\times\int _{\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\mathfrak{b}_{\Theta}}^{\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta}} \psi (\varkappa ) \Biggl[ \varkappa - \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr]^{\varpi -1}\,d\varkappa . \end{aligned}$$
(16)

To apply the definition we have to show that

$$\begin{aligned} \sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta}\leq \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta}. \end{aligned}$$

As

$$\begin{aligned} &\mathfrak{a}_{{\lambda}}> \mathfrak{b}_{{\lambda}}, \\ & \mathfrak{a}_{{\lambda}}- \mathfrak{b}_{{\lambda}}>0. \end{aligned}$$
(17)

Furthermore, \(\mathbf{a}\prec \boldsymbol{\Omega} \) and \(\mathbf{b}\prec \boldsymbol{\Omega}\). Then, we may write:

$$\begin{aligned} &\sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta}+ \mathfrak{a}_{{ \lambda}}=\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta}+ \mathfrak{a}_{{\lambda}}, \\ &\sum_{\Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta}- \sum_{\Theta =1}^{{ \lambda}-1}\mathfrak{a}_{\Theta}= \mathfrak{a}_{{\lambda}}- \mathfrak{b}_{{\lambda}} \end{aligned}$$
(18)

and using (17) in (18), we have

$$\begin{aligned} & \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{a}_{\Theta}>0, \\ &{-} \sum_{\Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta}< - \sum_{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \end{aligned}$$
(19)

and adding \(\sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}\) to both sides of (19), we have

$$\begin{aligned} \sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta}< \sum_{\Theta =1}^{{\lambda}-1} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta}. \end{aligned}$$
(20)

Now, (16) implies

$$\begin{aligned} {\mathbb{I}}&= \frac{1}{6\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr) \\ &\quad {}+4\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad{} - \frac{\varpi}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi +1} } J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\mathfrak{b}_{\Theta} \Biggr). \end{aligned}$$
(21)

Multiplying (21) by \(\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{ \Theta})\), we obtain the required equality. □

Remark 2

If we take \({\lambda}=2\) in Lemma 2.2, we have

$$\begin{aligned} &\frac{1}{6} \biggl[\psi (\Omega _{1}+ \Omega _{2}-\mathfrak{a})+4\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi (\Omega _{1}+\Omega _{2}-\mathfrak{b}) \biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}p^{\varpi}(\kappa )\psi '\bigl( \Omega _{1}+\Omega _{2}-\bigl( \kappa \mathfrak{a}+(1-\kappa )\mathfrak{b}\bigr)\bigr)\,d\kappa , \end{aligned}$$
(22)

which is a new inequality in the literature.

Here, we have different scenarios given as:

  • If we take \(\varpi =1\) in (22), we have

    $$\begin{aligned} &\frac{1}{6} \biggl[\psi (\Omega _{1}+\Omega _{2}-\mathfrak{a})+4\psi \biggl(\Omega _{1}+\Omega _{2}-\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi (\Omega _{1}+ \Omega _{2}-\mathfrak{b}) \biggr] \\ &\quad \quad{} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\Omega _{1}+\Omega _{2}- \mathfrak{b}}^{\Omega _{1}+\Omega _{2}-\mathfrak{a}}\psi (\varkappa )\,d\varkappa \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}p(\kappa )\psi ' \bigl(\Omega _{1}+ \Omega _{2}-\bigl(\kappa \mathfrak{a}+(1-\kappa )\mathfrak{b}\bigr)\bigr)\,d\kappa , \end{aligned}$$
    (23)

    which is a new equality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}= \mathfrak{b}\) and \(\varpi =1\) in (22), we have

    $$\begin{aligned} &\frac{1}{6} \biggl\{ \psi (\mathfrak{a} ) +4\psi \biggl( \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\mathfrak{b} ) \biggr\} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa \\ &\quad =(\mathfrak{b}-\mathfrak{a}) \int _{0}^{1}p(\kappa )\psi ' \bigl(\kappa \mathfrak{b}+(1-\kappa )\mathfrak{a}\bigr)\,d\kappa , \end{aligned}$$
    (24)

    which was proved by Alomari in [10].

3 Newton–Simpson-type inequalities via majorization

Numerous Newton–Mercer-type inequalities via majorization for convex function are presented in this section.

Theorem 3.1

Under the assumptions of Lemma 2.1, if the mapping \(|\mathfrak{\psi '}|\) is continuous convex on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[ \Biggl( \Theta _{1}\sum_{\Theta =1}^{{ \lambda}} \bigl\vert {\psi '} (\Omega _{\Theta} ) \bigr\vert - \Biggl( \Upsilon _{1}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{ \Theta}) \bigr\vert + \Upsilon _{2}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr) \\ &\quad \quad{} + \Biggl(\Theta _{2}\sum_{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} (\Omega _{\Theta} ) \bigr\vert - \Biggl(\Upsilon _{3}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert + \Upsilon _{4}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr) \\ &\quad \quad{} + \Biggl(\Theta _{3}\sum_{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} (\Omega _{\Theta} ) \bigr\vert - \Biggl(\Upsilon _{5}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert + \Upsilon _{6}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr) \Biggr], \end{aligned}$$

where notions \(\Theta _{1}\)\(\Theta _{3}\) and \(\Upsilon _{1}\)\(\Upsilon _{6}\) are explained below.

Proof

By taking the modulus on both sides in Lemma 2.1 and utilizing the Niezgoda–Jensen–Mercer inequality (6) for \(\epsilon =2\), \(\sigma _{\mathfrak{1}}=\kappa \) and \(\sigma _{\mathfrak{2}}=1-\kappa \), we have

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \int _{0}^{1} \bigl\vert { \Phi}^{\varpi}( \kappa ) \bigr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{ \Theta}-\sum_{\Theta =1}^{{\lambda}-1}\bigl( \kappa \mathfrak{b}_{\Theta}+(1- \kappa )\mathfrak{a}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad \leq \int _{0}^{\frac{1}{3}} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{8} \biggr) \biggr\vert \Biggl[\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert +(1-\kappa )\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr]\,d\kappa \\ &\quad \quad{} + \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{2} \biggr) \biggr\vert \Biggl[\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert +(1-\kappa )\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr]\,d\kappa \\ &\quad \quad{} + \int _{\frac{2}{3}}^{1} \biggl\vert \biggl(\kappa ^{\varpi}-\frac{7}{8} \biggr) \biggr\vert \Biggl[\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{ \Theta}) \bigr\vert - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert +(1-\kappa )\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr]\,d\kappa \end{aligned}$$
(25)

and we will utilize the following computations throughout the paper to develop new Newton–Mercer-type inequalities;

$$\begin{aligned}& \begin{aligned} \Theta _{1}&= \int _{0}^{\frac{1}{3}} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{8} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{1}{96}-\frac{1}{(1+\varpi )} \bigl[{8^{-\varpi -1}}- \bigl(3^{- \varpi -1}-8^{-\varpi -1}\bigr) \bigr], \end{aligned} \\ & \begin{aligned} \Theta _{2}&= \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \biggl(\kappa ^{ \varpi}-\frac{1}{2} \biggr) \biggr\vert \,d\kappa \\ &=\frac{1}{\varpi +1} \biggl[ \frac{2^{1+\varpi}-3^{1+\varpi}}{6^{1+\varpi}}+ \frac{-3^{1+\varpi}+4^{1+\varpi}}{6^{1+\varpi}} \biggr], \end{aligned} \\ & \begin{aligned} \Theta _{3}&= \int _{\frac{2}{3}}^{1} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{7}{8} \biggr) \biggr\vert \,d\kappa \\ &=\frac{7}{96}+\frac{1}{\varpi +1} \biggl[1- \biggl( \frac{8}{7} \biggr)^{-1- \varpi}- \biggl(\frac{7}{8} \biggr)^{1+\varpi}+ \biggl(\frac{3}{2} \biggr)^{-1-\varpi} \biggr]. \end{aligned} \end{aligned}$$

We will use integration by parts to solve the following identities that will be utilized for our new results and enhance the beauty of the paper:

$$\begin{aligned}& \begin{aligned} \Upsilon _{1}&= \int _{0}^{\frac{1}{3}}\kappa \biggl\vert \biggl(\kappa ^{ \varpi}-\frac{1}{8} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{23}{4608}-\frac{1}{(2+\varpi )} \bigl[8^{-\varpi -2}-({3^{- \varpi -2}-8^{-\varpi -2}} \bigr], \end{aligned} \\ & \begin{aligned} \Upsilon _{2}&= \int _{0}^{\frac{1}{3}}(1-\kappa ) \biggl\vert \biggl( \kappa ^{ \varpi}-\frac{1}{8} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{25}{4608}-\frac{1}{(2+\varpi )} \bigl[3^{-\varpi -2}-8^{- \varpi -2} \bigr] \\ &\quad{} + \frac{1}{(1+\varpi )} \bigl[3^{-\varpi -1}-8^{-\varpi -1} \bigr]- \frac{2^{-3(2+\varpi )}(15+7\varpi )}{2+3\varpi +\varpi ^{2}}, \end{aligned} \\ & \begin{aligned} \Upsilon _{3}&= \int _{\frac{1}{3}}^{\frac{2}{3}}\kappa \biggl\vert \biggl( \kappa ^{\varpi}-\frac{1}{2} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{1}{72}+\frac{1}{\varpi +2} \biggl[ \frac{2^{2+\varpi}-3^{2+\varpi}}{6^{2+\varpi}}+ \frac{-3^{2+\varpi}+4^{2+\varpi}}{6^{2+\varpi}} \biggr], \end{aligned} \\& \begin{aligned} \Upsilon _{4}&= \int _{\frac{1}{3}}^{\frac{2}{3}}(1-\kappa ) \biggl\vert \biggl( \kappa ^{\varpi}-\frac{1}{2} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{1}{72}+\frac{1}{\varpi +2} \biggl[- \frac{2^{2+\varpi}-3^{2+\varpi}}{6^{2+\varpi}}+ \frac{-3^{2+\varpi}+4^{2+\varpi}}{6^{2+\varpi}} \biggr] \\ &\quad{} + \frac{1}{\varpi +1} \biggl[- \frac{2^{1+\varpi}-3^{1+\varpi}}{6^{1+\varpi}}+ \frac{-3^{1+\varpi}+4^{1+\varpi}}{6^{1+\varpi}} \biggr], \end{aligned} \\& \begin{aligned} \Upsilon _{5}&= \int _{\frac{2}{3}}^{1}\kappa \biggl\vert \biggl(\kappa ^{ \varpi}-\frac{7}{8} \biggr) \biggr\vert \,d\kappa \\ &=\frac{175}{4608}+\frac{1}{\varpi +2} \biggl[1- \biggl( \frac{8}{7} \biggr)^{-2-\varpi}- \biggl(\frac{7}{8} \biggr)^{2+\varpi}+ \biggl( \frac{3}{2} \biggr)^{-2-\varpi} \biggr], \end{aligned} \\& \begin{aligned} \Upsilon _{6}&= \int _{\frac{2}{3}}^{1}(1-\kappa ) \biggl\vert \biggl( \kappa ^{ \varpi}-\frac{7}{8} \biggr) \biggr\vert \,d\kappa \\ &=\frac{161}{4608}+\frac{1}{\varpi +1} \biggl[1- \biggl( \frac{8}{7} \biggr)^{-1-\varpi}- \biggl(\frac{7}{8} \biggr)^{1+\varpi}+ \biggl( \frac{3}{2} \biggr)^{-1-\varpi} \biggr] \\ &\quad{} - \frac{1}{\varpi +2} \biggl[1- \biggl(\frac{8}{7} \biggr)^{-2-\varpi}- \biggl(\frac{7}{8} \biggr)^{2+\varpi}+ \biggl(\frac{3}{2} \biggr)^{-2- \varpi} \biggr]. \end{aligned} \end{aligned}$$

By using computations \(\Theta _{1}\)\(\Theta _{3}\) and \(\Upsilon _{1}\)\(\Upsilon _{6}\) in equation (25), we obtain the required result. □

Remark 3

If we take \({\lambda}=2\) in Theorem 3.1 then we have

$$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \bigl[ \bigl(\Theta _{1} \bigl\vert { \psi '} (\Omega _{1} ) \bigr\vert +\Theta _{1} \bigl\vert { \psi '} (\Omega _{2} ) \bigr\vert - \bigl(\Upsilon _{1} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\Upsilon _{2} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert \bigr) \bigr) \\ &\quad \quad{} + \bigl(\Theta _{2} \bigl\vert {\psi '} (\Omega _{1} ) \bigr\vert + \Theta _{2} \bigl\vert {\psi '} (\Omega _{2} ) \bigr\vert - \bigl( \Upsilon _{3} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert + \Upsilon _{4} \bigl\vert \psi '(\mathfrak{b}_{ \Theta}) \bigr\vert \bigr) \bigr) \\ &\quad \quad{} + \bigl(\Theta _{3} \bigl\vert {\psi '} (\Omega _{1} ) \bigr\vert + \Theta _{3} \bigl\vert {\psi '} (\Omega _{2} ) \bigr\vert - \bigl( \Upsilon _{5} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\Upsilon _{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert \bigr) \bigr) \bigr], \end{aligned}$$
(26)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in equation (26) then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl\{ \psi (\Omega _{1}+ \Omega _{2}-\mathfrak{a})+3 \psi \biggl(\Omega _{1}+ \Omega _{2}- \biggl( \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \biggr) \\ &\quad \quad{} + 3\psi \biggl(\Omega _{1}+\Omega _{2}- \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \biggr)+\psi (\Omega _{1}+ \Omega _{2}-\mathfrak{b}) \biggr\} \\ &\quad \quad {}- \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{(\Omega _{1}+\Omega _{2}- \mathfrak{b})}^{(\Omega _{1}+\Omega _{2}-\mathfrak{a})} \psi ( \varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl[ \biggl(\frac{17}{576} \bigl\vert { \psi '} (\Omega _{1} ) \bigr\vert + \frac{17}{576} \bigl\vert { \psi '} (\Omega _{2} ) \bigr\vert \\ &\quad \quad {}- \biggl(\frac{251}{41{,}472} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\frac{973}{41{,}472} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert \biggr) \biggr) \\ &\quad \quad{} + \biggl(\frac{1}{36} \bigl\vert {\psi '} (\Omega _{1} ) \bigr\vert + \frac{1}{36} \bigl\vert {\psi '} (\Omega _{2} ) \bigr\vert - \biggl( \frac{1}{72} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\frac{1}{72} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert \biggr) \biggr) \\ &\quad \quad{} + \biggl(\frac{17}{576} \bigl\vert {\psi '} (\Omega _{1} ) \bigr\vert + \frac{17}{576} \bigl\vert {\psi '} (\Omega _{2} ) \bigr\vert \\ &\quad \quad {}- \biggl( \frac{973}{41{,}472} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\frac{251}{41{,}472} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert \biggr) \biggr) \biggr], \end{aligned}$$
    (27)

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in equation (26), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa - \biggl(\frac{3}{8} \biggr) \psi \biggl(\frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} - \biggl(\frac{3}{8} \biggr)\psi \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr)- \frac{\psi (\mathfrak{a})+\psi (\mathfrak{b})}{8} \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl(\frac{25}{576} \biggr) \bigl[ \bigl\vert \psi '(\mathfrak{b}) \bigr\vert + \bigl\vert \psi '(\mathfrak{a}) \bigr\vert \bigr], \end{aligned}$$

    which appeared in [9].

Now, we give results for Simpson-type inequalities by employing Lemma 2.2.

Theorem 3.2

Under the assumptions of Lemma 2.2, if the mapping \(|\psi '|\) is continuous convex on I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{6} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+4 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}} ^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \Biggl(\sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggr) \Biggl[G_{1}\sum_{\Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{\Theta}) \bigr\vert -Q_{1}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert -Q_{2}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{b}_{\Theta}) \bigr\vert \Biggr] \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \Biggl[G_{2}\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{ \Theta}) \bigr\vert -Q_{3}\sum _{\upsilon =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert -Q_{4}\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{b}_{\Theta}) \bigr\vert \Biggr], \end{aligned}$$

where \(G_{1}\), \(G_{2}\), and \(Q_{1}\)\(Q_{4}\) are the computations explained below.

Proof

By taking the modulus on both sides in Lemma 2.2 and using the Niezgoda–Jensen–Mercer inequality, we have

$$\begin{aligned} & \Biggl\vert \frac{1}{6} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+4\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \int _{0}^{1} \bigl\vert p^{\varpi}( \kappa ) \bigr\vert \Biggl\vert \psi ' \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{\Theta =1}^{{ \lambda}-1}\bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{ \Theta}\bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad =\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{0}^{\frac{1}{2}} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{6} \biggr) \biggr\vert \\ &\quad \quad {}\times \Biggl[\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert +(1-\kappa )\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr]\,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{1}{2}}^{1} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{5}{6} \biggr) \biggr\vert \\ &\quad \quad {}\times \Biggl[\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{\Theta}) \bigr\vert - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert +(1-\kappa )\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert \Biggr) \Biggr]\,d\kappa . \end{aligned}$$
(28)

Here, we have

$$\begin{aligned}& \begin{aligned} G_{1}&= \int _{0}^{\frac{1}{2}} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{6} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{1}{36}-\frac{2}{\varpi +1} \biggl(\frac{1}{6} \biggr)^{\varpi +1}+ \frac{1}{\varpi +1} \biggl(\frac{1}{2} \biggr)^{\varpi +1}, \end{aligned} \\& \begin{aligned} G_{2}&= \int _{\frac{1}{2}}^{1} \biggl\vert \biggl(\kappa ^{\varpi}- \frac{5}{6} \biggr) \biggr\vert \,d\kappa \\ &=\frac{5}{36}{+}\frac{1}{\varpi +1} \biggl[{-2} \biggl( \frac{5}{6} \biggr)^{\varpi +1}+ \biggl(\frac{1}{2} \biggr)^{\varpi +1}+1 \biggr]. \end{aligned} \end{aligned}$$

Now, by using integration by parts we have

$$\begin{aligned}& \begin{aligned} Q_{1}&= \int _{0}^{\frac{1}{2}}\kappa \biggl\vert \biggl(\kappa ^{\varpi}- \frac{1}{6} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{7}{432}-\frac{2}{\varpi +2} \biggl(\frac{1}{6} \biggr)^{\varpi +2}+ \frac{1}{\varpi +2} \biggl(\frac{1}{2} \biggr)^{\varpi +2}, \end{aligned} \\& \begin{aligned} Q_{2}&= \int _{0}^{\frac{1}{2}}(1-\kappa ) \biggl\vert \biggl( \kappa ^{\varpi}- \frac{1}{6} \biggr) \biggr\vert \,d\kappa \\ &=-\frac{5}{432}-\frac{1}{\varpi +1} \biggl[2 \biggl( \frac{1}{6} \biggr)^{ \varpi +1}- \biggl(\frac{1}{2} \biggr)^{\varpi +1} \biggr]+ \frac{1}{\varpi +2} \biggl[2 \biggl( \frac{1}{6} \biggr)^{\varpi +2}- \biggl( \frac{1}{2} \biggr)^{\varpi +2} \biggr], \end{aligned} \\& \begin{aligned} {Q_{3}}&= \int _{\frac{1}{2}}^{1}\kappa \biggl\vert \biggl(\kappa ^{ \varpi}-\frac{5}{6} \biggr) \biggr\vert \,d\kappa \\ &=\frac{25}{432}{+}\frac{1}{\varpi +2} \biggl[{-2} \biggl( \frac{5}{6} \biggr)^{\varpi +2}+ \biggl(\frac{1}{2} \biggr)^{\varpi +2}+1 \biggr], \end{aligned} \\& \begin{aligned} Q_{4}&= \int _{\frac{1}{2}}^{1}(1-\kappa ) \biggl\vert \biggl( \kappa ^{\varpi}- \frac{5}{6} \biggr) \biggr\vert \,d\kappa \\ &=\frac{35}{432}+\frac{1}{\varpi +1} \biggl[-2 \biggl( \frac{5}{6} \biggr)^{ \varpi +1}+ \biggl(\frac{1}{2} \biggr)^{\varpi +1}+1 \biggr] \\ &\quad{} - \frac{1}{\varpi +2} \biggl[-2 \biggl(\frac{5}{6} \biggr)^{\varpi +2}+ \biggl(\frac{1}{2} \biggr)^{\varpi +2}+1 \biggr]. \end{aligned} \end{aligned}$$

Using computations \(G_{1}\), \(G_{2}\), and \(Q_{1}\)\(Q_{4}\) in (28), we obtain the required result. □

Remark 4

If we take \({\lambda}=2\) in Theorem 3.2, we have

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+4\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi ( \Omega _{1}+ \Omega _{2}-\mathfrak{b} ) \biggr] \\ &\quad \quad{} - (\mathfrak{b}-\mathfrak{a})^{\varpi} J_{ (\Omega _{1}+\Omega _{2}- \mathfrak{a} )^{-}} ^{(\varpi )}\psi (\Omega _{1}+\Omega _{2}- \mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \bigl[G_{1} \bigl\vert \psi '(\Omega _{1}) \bigr\vert +G_{1} \bigl\vert \psi '(\Omega _{2}) \bigr\vert - Q_{1} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert -Q_{2} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert \bigr] \\ &\quad \quad{} + (\mathfrak{b}-\mathfrak{a}) \bigl[G_{2} \bigl\vert \psi '(\Omega _{1}) \bigr\vert +G_{2} \bigl\vert \psi '(\Omega _{2}) \bigr\vert \bigr]-Q_{3} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert -Q_{4} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ], \end{aligned}$$
(29)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in (29), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} ) +4\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\} \\ &\quad \quad{} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\Omega _{1}+\Omega _{2}- \mathfrak{b}}^{\Omega _{1}+\Omega _{2}-\mathfrak{a}}\psi (\varkappa )d( \varkappa ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ \biggl(\frac{5}{72} \biggr) \bigl\vert \psi '(\Omega _{1}) \bigr\vert + \biggl(\frac{5}{72} \biggr) \bigl\vert \psi '(\Omega _{2}) \bigr\vert - \biggl(\frac{61}{1296} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\frac{29}{1296} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert \biggr) \\ &\quad \quad{} + \biggl(\frac{5}{72} \biggr) \bigl\vert \psi '( \Omega _{1}) \bigr\vert + \biggl( \frac{5}{72} \biggr) \bigl\vert \psi '(\Omega _{2}) \bigr\vert - \biggl(\frac{29}{1296} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert +\frac{61}{1296} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert \biggr) \biggr\} , \end{aligned}$$
    (30)

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (29), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\mathfrak{a} ) +4\psi \biggl(\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi ( \mathfrak{b} ) \biggr\} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq \biggl(\frac{5}{72} \biggr) (\mathfrak{b}-\mathfrak{a}) \bigl[ \bigl\vert \psi '(\mathfrak{a}) \bigr\vert + \bigl\vert \psi '(\mathfrak{b}) \bigr\vert \bigr], \end{aligned}$$
    (31)

    which was given by Alomari in [10].

Theorem 3.3

Under the assumptions of Lemma 2.1, if the mapping \(|\mathfrak{\psi '}|^{q}\) with \(q>1\) is continuous convex on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[(\Theta _{1})^{1-\frac{1}{q}} \Biggl( \Theta _{1}\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} ( \Omega _{\Theta} ) \bigr\vert ^{q} \\ &\quad \quad {}- \Biggl(\Upsilon _{1}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} +\Upsilon _{2}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + (\Theta _{2})^{1-\frac{1}{q}} \Biggl(\Theta _{2} \sum_{\Theta =1}^{{ \lambda}} \bigl\vert {\psi '} (\Omega _{\Theta} ) \bigr\vert ^{q}- \Biggl(\Upsilon _{3}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}+\Upsilon _{4}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + (\Theta _{3})^{1-\frac{1}{q}} \Biggl(\Theta _{3} \sum_{\Theta =1}^{{ \lambda}} \bigl\vert {\psi '} (\Omega _{\Theta} ) \bigr\vert ^{q}- \Biggl(\Upsilon _{5}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}+\Upsilon _{6}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{\frac{1}{q}} \Biggr], \end{aligned}$$

where notions \(\Theta _{1}\)\(\Theta _{3}\) and \(\Upsilon _{1}\)\(\Upsilon _{6}\) are defined in Theorem 3.1.

Proof

By taking the modulus on both sides in Lemma 2.1, we have

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+ \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert \Biggl\vert \psi '\Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{ \Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr)\Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert \Biggl\vert \psi '\Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{ \Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr)\Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}-\frac{7}{8} \biggr\vert \Biggl\vert \psi '\Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr)\Biggr) \Biggr\vert \,d\kappa \end{aligned}$$

by using the power-mean inequality and Niezgoda–Jensen–Mercer inequality, we have

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+ \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[ \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{ \varpi}-\frac{1}{8} \biggr\vert \biggr)^{1-\frac{1}{q}}\Biggl( \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} ( \Omega _{\Theta} ) \bigr\vert ^{q} \\ &\quad \quad{} - \Biggl(\kappa \sum _{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} +(1- \kappa )\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert \,d\kappa \biggr)^{1-\frac{1}{q}} \Biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} ( \Omega _{\Theta} ) \bigr\vert ^{q} \\ &\quad \quad {}- \Biggl(\kappa \sum _{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1- \kappa )\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}-\frac{7}{8} \biggr\vert \,d\kappa \biggr)^{1-\frac{1}{q}}\Biggl( \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}- \frac{7}{8} \biggr\vert \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '} ( \Omega _{\Theta} ) \bigr\vert ^{q} \\ &\quad \quad{}- \Biggl(\kappa \sum _{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1- \kappa )\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{\frac{1}{q}} \Biggr]. \end{aligned}$$
(32)

By using computations \(\Theta _{1}\)\(\Theta _{3}\) and \(\Upsilon _{1}\)\(\Upsilon _{6}\) given in Theorem 3.1, the proof is completed. □

Remark 5

If we take \({\lambda}=2\) in Theorem 3.3, then we have

$$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \bigl[(\Theta _{1})^{1-\frac{1}{q}} \bigl(\Theta _{1} \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q} +\Theta _{1} \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q}- \bigl(\Upsilon _{1} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} +\Upsilon _{2} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \bigr) \bigr)^{\frac{1}{q}} \\ &\quad \quad{} + (\Theta _{2})^{1-\frac{1}{q}} \bigl(\Theta _{2} \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+\Theta _{2} \bigl\vert {\psi '}( \Omega _{2}) \bigr\vert ^{q} - \bigl(\Upsilon _{3} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+\Upsilon _{4} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \bigr) \bigr)^{\frac{1}{q}} \\ &\quad \quad{} + (\Theta _{3})^{1-\frac{1}{q}} \bigl(\Theta _{3} \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q} +\Theta _{3} \bigl\vert {\psi '} {\Omega _{2}} \bigr\vert ^{q}- \bigl(\Upsilon _{5} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+\Upsilon _{6} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \bigr) \bigr)^{\frac{1}{q}} \bigr], \end{aligned}$$
(33)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in (33), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{{(\Omega _{1}+ \Omega _{2}-\mathfrak{b})}}^{{(\Omega _{1}+\Omega _{2}- \mathfrak{a})}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl[ \biggl(\frac{17}{576} \biggr)^{1- \frac{1}{q}} \biggl[ \biggl(\frac{17}{576} \biggr) \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \biggl(\frac{17}{576} \biggr) \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q} \\ &\quad \quad {}- \biggl( \frac{251}{41{,}472} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{973}{41{,}472} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + \biggl(\frac{1}{36} \biggr)^{1-\frac{1}{q}} \biggl[ \biggl( \frac{1}{36} \biggr) \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \biggl(\frac{1}{36} \biggr) \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q} \\ &\quad \quad {}- \biggl(\frac{1}{72} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{72} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + \biggl(\frac{17}{576} \biggr)^{1-\frac{1}{q}} \biggl[ \biggl( \frac{17}{576} \biggr) \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \biggl(\frac{17}{576} \biggr) \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q} \\ &\quad \quad {}- \biggl(\frac{973}{41{,}472} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{251}{41{,}472} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \biggr], \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (33), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa - \biggl(\frac{3}{8} \biggr) \psi \biggl(\frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} - \biggl(\frac{3}{8} \biggr)\psi \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr)- \frac{\psi (\mathfrak{a})+\psi (\mathfrak{b})}{8} \biggr\vert \\ &\quad \leq \frac{(\mathfrak{b}-\mathfrak{a})}{36} \biggl[ \biggl( \biggl( \frac{17}{16} \biggr)^{1-\frac{1}{q}} \biggl[\frac{251}{1152} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q}+ \frac{973}{1152} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} \biggr]^{ \frac{1}{q}} \biggr) \\ &\quad \quad{} + \biggl[\frac{1}{2} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q}+\frac{1}{2} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad {}+ \biggl( \biggl(\frac{17}{16} \biggr)^{1-\frac{1}{q}} \biggl[\frac{973}{1152} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q}+ \frac{251}{1152} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr) \biggr], \end{aligned}$$

    which appeared in [9].

Theorem 3.4

Under the assumptions of Lemma 2.2, if the mapping \({|\mathfrak{\psi '}|^{q}}\) is continuous convex with \(q>1\) on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{6} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+4 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}} ^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) (G_{1})^{1-\frac{1}{q}} \Biggl[G_{1}\sum_{ \Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{\Theta}) \bigr\vert ^{q}-Q_{1}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}-Q_{2} \sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr]^{\frac{1}{q}} \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) (G_{2})^{1-\frac{1}{q}} \\ &\quad \quad {}\times \Biggl[G_{2}\sum_{\Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{\Theta}) \bigr\vert ^{q}-Q_{3}\sum_{\upsilon =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}-Q_{4}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr]^{\frac{1}{q}}, \end{aligned}$$

where \(G_{1}\), \(G_{2}\), and \(Q_{1}\)\(Q_{4}\) are the computations explained in Theorem 3.2.

Proof

The proof of the theorem is similar to the proof of Theorem 3.3. □

Remark 6

If we take \({\lambda}=2\) in Theorem 3.4, we have

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+4\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi ( \Omega _{1}+ \Omega _{2}-\mathfrak{b} ) \biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}- \mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) (G_{1})^{1-\frac{1}{q}} \bigl[G_{1} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+G_{1} \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}-Q_{1} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}-Q_{2} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \bigr]^{\frac{1}{q}} \\ &\quad \quad{} + (\mathfrak{b}-\mathfrak{a}) (G_{2})^{1-\frac{1}{q}} \bigl[G_{2} \bigl\vert \psi '( \Omega _{1}) \bigr\vert ^{q}+G_{2} \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}-Q_{3} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}-Q_{4} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \bigr]^{\frac{1}{q}}. \end{aligned}$$
(34)
  • If we take \(\varpi =1\) in (34), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} ) +4\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\} \\ &\quad \quad{} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\Omega _{1}+\Omega _{2}- \mathfrak{b}}^{\Omega _{1}+\Omega _{2}-\mathfrak{a}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl(\frac{5}{72} \biggr)^{1- \frac{1}{q}} \biggl\{ \biggl[\frac{5}{72} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \frac{5}{72} \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q} \\ &\quad \quad {}- \biggl(\frac{29}{1296} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{61}{1296} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[\frac{5}{72} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+\frac{5}{72} \bigl\vert \psi '( \Omega _{2}) \bigr\vert ^{q}- \biggl(\frac{61}{1296} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{29}{1296} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) \(\varpi =1\) in (34), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\mathfrak{a} ) +4\psi \biggl(\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\mathfrak{b} ) \biggr\} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl(\frac{5}{72} \biggr)^{1- \frac{1}{q}} \biggl\{ \biggl[\frac{29}{{1296}} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{61}{{1296}} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + \biggl[\frac{61}{{1296}} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{29}{{1296}} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr]^{ \frac{1}{q}} \biggr\} , \end{aligned}$$

    which was proved by Alomari in [10].

Theorem 3.5

Under the assumptions of Lemma 2.1, if the mapping \({|\mathfrak{\psi '}|^{q}}\) is continuous convex on the interval I, then:

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[{ \biggl( \frac{6-8^{\frac{1}{\varpi}}}{3.8^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(\varpi p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{8^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1} \biggr] \biggr)^{ \frac{1}{p}}} \\ &\quad \quad{}\times \Biggl(\frac{1}{3}\sum_{\Theta =1}^{{\lambda}} \bigl\vert {\psi '}( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl(\frac{1}{18}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} +\frac{5}{18}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{ \frac{1}{q}} \\ &\quad \quad{} + { \biggl( \frac{6-2^{\frac{1}{\varpi}}}{3.2^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(p\varpi +1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{2^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1}+ \biggl( \frac{2}{3} \biggr)^{\varpi p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \Biggl(\frac{1}{3}\sum_{\Theta =1}^{{\lambda}} \bigl\vert {\psi '}( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl(\frac{1}{6}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+\frac{1}{6}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{ \frac{1}{q}} \\ &\quad \quad{} + { \biggl( \biggl(2. \biggl(\frac{7}{8} \biggr)^{\frac{1}{\varpi}}-1 \biggr) \biggl(\frac{7}{8} \biggr)^{p} + \frac{1}{(p\varpi +1)} \biggl[-2. \biggl(\frac{7}{8} \biggr)^{\frac{\varpi p+1}{\varpi}}+ \biggl(\frac{2}{3} \biggr)^{\varpi p+1}+1 \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \Biggl(\frac{1}{3}\sum_{\Theta =1}^{{\lambda}} \bigl\vert {\psi '}( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl(\frac{5}{18}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+\frac{1}{18}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)^{ \frac{1}{q}} \Biggr] \end{aligned}$$

holds, where p and q are conjugate exponents with \(p,q>1\).

Proof

Utilizing Lemma 2.1 along with the modulus property yields,

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{ \Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{ \Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}-\frac{7}{8} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa . \end{aligned}$$

By using Hölder’s inequality and the Niezgoda–Jensen–Mercer inequality,

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+ \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[ \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert ^{p}\,d\kappa \biggr)^{\frac{1}{p}} \Biggl( \int _{0}^{ \frac{1}{3}} \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '}( \Omega _{\Theta}) \bigr\vert ^{q} \\ &\quad \quad {}- \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} +(1-\kappa )\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert ^{p}\,d\kappa \biggr)^{\frac{1}{p}} \Biggl( \int _{ \frac{1}{3}}^{\frac{2}{3}} \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert { \psi '}( \Omega _{\Theta}) \bigr\vert ^{q} \\ &\quad \quad {}- \Biggl(\kappa \sum _{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1- \kappa )\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{\frac{1}{q}} \\ &\quad \quad{} + \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}-\frac{7}{8} \biggr\vert ^{p}\,d\kappa \biggr)^{\frac{1}{p}} \Biggl( \int _{\frac{2}{3}}^{1} \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert {\psi '}( \Omega _{ \Theta}) \bigr\vert ^{q} \\ &\quad \quad {}- \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1-\kappa )\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr)^{ \frac{1}{q}} \Biggr]. \end{aligned}$$
(35)

Consider

$$\begin{aligned} & \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert ^{p}\,d\kappa \\ &\quad = \int _{0}^{ (\frac{1}{8} )^{\frac{1}{\varpi}}} \biggl( \frac{1}{8}- \kappa ^{\varpi} \biggr)^{p}\,d\kappa + \int _{ ( \frac{1}{8} )^{\varpi}}^{\frac{1}{3}} \biggl(\kappa ^{\varpi}- \frac{1}{8} \biggr)^{p}\,d\kappa \\ &\quad \leq \int _{0}^{ (\frac{1}{8} )^{\frac{1}{\varpi}}} \biggl( \frac{1}{8^{p}}- \kappa ^{\varpi p} \biggr)\,d\kappa + \int _{ ( \frac{1}{8} )^{\varpi}}^{\frac{1}{3}} \biggl(\kappa ^{\varpi p}- \frac{1}{8^{p}} \biggr)\,d\kappa \\ &\quad =\frac{6-8^{\frac{1}{\varpi}}}{3.8^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(\varpi p+1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{8^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1} \biggr], \end{aligned}$$

similarly,

$$\begin{aligned} & \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert ^{p}\,d\kappa \\ &\quad \leq \frac{6-2^{\frac{1}{\varpi}}}{3.2^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(p\varpi +1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{2^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1}+ \biggl( \frac{2}{3} \biggr)^{\varpi p+1} \biggr], \\ & { \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}- \frac{7}{8} \biggr\vert ^{p}\,d\kappa } \\ &\quad \leq \biggl(2. \biggl(\frac{7}{8} \biggr)^{\frac{1}{\varpi}}-1 \biggr) \biggl(\frac{7}{8} \biggr)^{p} +\frac{1}{(p\varpi +1)} \biggl[-2. \biggl( \frac{7}{8} \biggr)^{\frac{\varpi p+1}{\varpi}}+ \biggl( \frac{2}{3} \biggr)^{ \varpi p+1}+1 \biggr]. \end{aligned}$$

It follows from \((\Lambda _{1}-\Lambda _{2})^{p}\leq ( \Lambda _{1}^{p}-\Lambda _{2}^{p})\) for any \(\Lambda _{1}\geq \Lambda _{2}\geq 0\) and \(p> 1\). □

Remark 7

If we take \({\lambda}=2\) in Theorem 3.5, then we have

$$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a})\biggl[ { \biggl( \frac{6-8^{\frac{1}{\varpi}}}{3.8^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(\varpi p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{8^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1} \biggr] \biggr)^{ \frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{1}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} +\frac{5}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl( \frac{6-2^{\frac{1}{\varpi}}}{3.2^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(p\varpi +1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{2^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1}+ \biggl( \frac{2}{3} \biggr)^{\varpi p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{1}{6} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+\frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{ \frac{1}{q}} \\ &\quad \quad{} + { \biggl( \biggl(2. \biggl(\frac{7}{8} \biggr)^{\frac{1}{\varpi}}-1 \biggr) \biggl(\frac{7}{8} \biggr)^{p} + \frac{1}{(p\varpi +1)} \biggl[-2. \biggl(\frac{7}{8} \biggr)^{\frac{\varpi p+1}{\varpi}}+ \biggl(\frac{2}{3} \biggr)^{\varpi p+1}+1 \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{5}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+\frac{1}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$
(36)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in (36), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{{(\Omega _{1}+ \Omega _{2}-\mathfrak{b})}}^{{(\Omega _{1}+\Omega _{2}- \mathfrak{a})}} \psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a})\biggl[ { \biggl( \frac{-2}{3.8^{1+p}}+ \frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{p+1}-2. \biggl(\frac{1}{8} \biggr)^{p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{1}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} +\frac{5}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl(\frac{4}{3.2^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{ p+1}-2. \biggl(\frac{1}{2} \biggr)^{ p+1} + \biggl( \frac{2}{3} \biggr)^{p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{1}{6} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+\frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{ \frac{1}{q}} \\ &\quad \quad{} + { \biggl( \biggl(\frac{3}{4} \biggr) \biggl(\frac{7}{8} \biggr)^{p} +\frac{1}{(p+1)} \biggl[-2. \biggl( \frac{7}{8} \biggr)^{ p+1}+ \biggl( \frac{2}{3} \biggr)^{ p+1}+1 \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl(\frac{1}{3} \bigl[ \bigl\vert {\psi '}( \Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr]- \biggl(\frac{5}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+\frac{1}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (36), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa - \biggl(\frac{3}{8} \biggr) \psi \biggl(\frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} - \biggl(\frac{3}{8} \biggr)\psi \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr)- \frac{\psi (\mathfrak{a})+\psi (\mathfrak{b})}{8} \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ { \biggl( \frac{-2}{3.8^{1+p}}+ \frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{p+1}-2. \biggl(\frac{1}{8} \biggr)^{p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad {}\times\biggl( \frac{5}{18} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} + \frac{1}{18} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl(\frac{4}{3.2^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl( \frac{1}{3} \biggr)^{ p+1}-2. \biggl(\frac{1}{2} \biggr)^{ p+1} + \biggl( \frac{2}{3} \biggr)^{p+1} \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad {}\times \biggl(\frac{1}{6} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl( \biggl(\frac{3}{4} \biggr) \biggl(\frac{7}{8} \biggr)^{p} +\frac{1}{(p+1)} \biggl[-2. \biggl( \frac{7}{8} \biggr)^{ p+1}+ \biggl( \frac{2}{3} \biggr)^{ p+1}+1 \biggr] \biggr)^{\frac{1}{p}}} \\ &\quad \quad {}\times\biggl( \frac{1}{18} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+\frac{5}{18} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}$$

Theorem 3.6

Under the assumptions of Lemma 2.2, if the mapping \({|\mathfrak{\psi '}|^{q}}\) is continuous convex on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{6} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+4 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta} )^{-}}^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[{ \biggl[ \biggl( \frac{2}{6^{\frac{1}{\varpi}}}-\frac{1}{2} \biggr).\frac{1}{6^{p}} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{1}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \Biggl[\frac{1}{2}\sum_{\Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{ \Theta}) \bigr\vert ^{q}-\frac{1}{8}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}-\frac{3}{8}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr]^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl[ \biggl(2. \biggl(\frac{5}{6} \biggr)^{ \frac{1}{\varpi}}- \frac{3}{2} \biggr). \biggl(\frac{5}{6} \biggr)^{p} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl(\frac{1}{2} \biggr)^{\varpi p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \Biggl[\frac{1}{2}\sum_{\Theta =1}^{{\lambda}} \bigl\vert \psi '(\Omega _{ \Theta}) \bigr\vert ^{q}-\frac{3}{8}\sum_{\upsilon =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}-\frac{1}{8}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr]^{\frac{1}{q}} \Biggr], \end{aligned}$$

where p and q are conjugate exponents with \(p,q>1\).

Proof

The proof of the theorem is similar to the proof of Theorem 3.5. □

Remark 8

If we take \({\lambda}=2\) in Theorem 3.6, we have

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+4\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi ( \Omega _{1}+ \Omega _{2}-\mathfrak{b} ) \biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl[ { \biggl[ \biggl( \frac{2}{6^{\frac{1}{\varpi}}}-\frac{1}{2} \biggr).\frac{1}{6^{p}} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{1}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl[\frac{1}{2}\bigl[ \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}\bigr]- \frac{1}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}-\frac{3}{8}\|\psi '( \mathfrak{b}) \vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl[ \biggl(2. \biggl(\frac{5}{6} \biggr)^{ \frac{1}{\varpi}}- \frac{3}{2} \biggr). \biggl(\frac{5}{6} \biggr)^{p} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl(\frac{1}{2} \biggr)^{\varpi p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl[\frac{1}{2}\bigl[ \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}\bigr]- \frac{3}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}-\frac{1}{8} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr] , \end{aligned}$$
(37)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in equation (37), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} ) +4\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\} \\ &\quad \quad{} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\Omega _{1}+\Omega _{2}- \mathfrak{b}}^{\Omega _{1}+\Omega _{2}-\mathfrak{a}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ { \biggl[- \frac{1}{6^{p+1}} + \frac{1}{ p+1} \biggl(-2 \biggl(\frac{1}{6} \biggr)^{ p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl[\frac{1}{2} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+\frac{1}{2} \bigl\vert \psi '( \Omega _{2}) \bigr\vert ^{q} - \biggl(\frac{1}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{3}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl[ \biggl(\frac{1}{6} \biggr). \biggl(\frac{5}{6} \biggr)^{p} +\frac{1}{p+1} \biggl(-2 \biggl( \frac{5}{6} \biggr)^{ p+1}+ \biggl(\frac{1}{2} \biggr)^{ p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad{}\times \biggl[\frac{1}{2} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+\frac{1}{2} \bigl\vert \psi '( \Omega _{2}) \bigr\vert ^{q}- \biggl(\frac{3}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} + \frac{1}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) \(\varpi =1\) in (37), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\mathfrak{a} ) +4\psi \biggl(\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\mathfrak{b} ) \biggr\} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ { \biggl[- \frac{1}{6^{p+1}} + \frac{1}{ p+1} \biggl(-2 \biggl(\frac{1}{6} \biggr)^{ p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \biggl[\frac{3}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \\ &\quad \quad{} + { \biggl[ \biggl(\frac{1}{6} \biggr). \biggl(\frac{5}{6} \biggr)^{p} +\frac{1}{p+1} \biggl(-2 \biggl( \frac{5}{6} \biggr)^{ p+1}+ \biggl(\frac{1}{2} \biggr)^{ p+1}+1 \biggr) \biggr]^{\frac{1}{p}}} \\ &\quad \quad {}\times\biggl[ \frac{1}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+\frac{3}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

Theorem 3.7

Under the assumptions of Lemma 2.1and if the mapping \({|\mathfrak{\psi '}|^{q}}\) is continuous convex on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+ \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[ { \frac{1}{p} \biggl( \frac{6-8^{\frac{1}{\varpi}}}{3.8^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(\varpi p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl( \frac{1}{8^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \Biggl(\frac{1}{3}\sum _{\Theta =1}^{{\lambda}} \bigl\vert { \psi '}( \Omega _{\Theta}) \bigr\vert ^{q} - \Biggl( \frac{1}{18}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} + \frac{5}{18}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{ \Theta}) \bigr\vert ^{q} \Biggr) \Biggr) \\ &\quad \quad{} + {\frac{1}{p} \biggl( \frac{6-2^{\frac{1}{\varpi}}}{3.2^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(p\varpi +1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl( \frac{1}{2^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1}+ \biggl( \frac{2}{3} \biggr)^{\varpi p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \Biggl(\frac{1}{3}\sum _{\Theta =1}^{{\lambda}} \bigl\vert { \psi '}( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl( \frac{1}{6}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+ \frac{1}{6}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{ \Theta}) \bigr\vert ^{q} \Biggr) \Biggr) \\ &\quad \quad{} + {\frac{1}{p} \biggl( \biggl(2. \biggl(\frac{7}{8} \biggr)^{ \frac{1}{\varpi}}-1 \biggr) \biggl(\frac{7}{8} \biggr)^{p} + \frac{1}{(p\varpi +1)} \biggl[-2. \biggl( \frac{7}{8} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl(\frac{2}{3} \biggr)^{\varpi p+1}+1 \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \Biggl(\frac{1}{3}\sum _{\Theta =1}^{{\lambda}} \bigl\vert { \psi '}( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl( \frac{5}{18}\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+ \frac{1}{18}\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{ \Theta}) \bigr\vert ^{q} \Biggr) \Biggr) \Biggr] \end{aligned}$$

holds, where p and q are conjugate exponents with \(p,q>1\).

Proof

Utilizing Lemma 2.1 along with the modulus property yields,

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{}+3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr) + \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{8} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{ \Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{\varpi}- \frac{1}{2} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{ \Theta}+(1-\kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \\ &\quad \quad{} + \sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}- \mathfrak{a}_{ \Theta}) \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}-\frac{7}{8} \biggr\vert \Biggl\vert \psi ' \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \bigl(\kappa \mathfrak{a}_{\Theta}+(1- \kappa )\mathfrak{b}_{\Theta} \bigr) \Biggr) \Biggr\vert \,d\kappa \end{aligned}$$

and by using Young’s inequality and the Niezgoda–Jensen–Mercer inequality we have

$$\begin{aligned} & \Biggl\vert \frac{1}{8} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+3 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{2\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{3} \Biggr) \\ &\quad \quad{} +3\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \frac{\mathfrak{a}_{\Theta}+2\mathfrak{b}_{\Theta}}{3} \Biggr)+ \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum_{ \Theta =1}^{{\lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad {}- \frac{\Gamma (1+\varpi )}{ (\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta}) )^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} )^{-}}\psi \Biggl( \sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) \Biggl[ \frac{1}{p} \biggl( \int _{0}^{\frac{1}{3}} \biggl\vert \kappa ^{\varpi}-\frac{1}{8} \biggr\vert ^{p}\,d\kappa \biggr) \end{aligned}$$
(38)
$$\begin{aligned} &\quad \quad{} + \frac{1}{q} \Biggl( \int _{0}^{\frac{1}{3}} \Biggl(\sum _{\Theta =1}^{{ \lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert ^{q}- \Biggl(\kappa \sum _{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q} +(1-\kappa )\sum_{ \Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr) \\ &\quad \quad{} + \frac{1}{p} \biggl( \int _{\frac{1}{3}}^{\frac{2}{3}} \biggl\vert \kappa ^{ \varpi}-\frac{1}{2} \biggr\vert ^{p}\,d\kappa \biggr) \\ &\quad \quad {}+\frac{1}{q} \Biggl( \int _{ \frac{1}{3}}^{\frac{2}{3}} \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert ^{q} - \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1- \kappa )\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr) \end{aligned}$$
(39)
$$\begin{aligned} &\quad \quad{} + \frac{1}{p} \biggl( \int _{\frac{2}{3}}^{1} \biggl\vert \kappa ^{\varpi}- \frac{7}{8} \biggr\vert ^{p}\,d\kappa \biggr) \\ &\quad \quad {}+\frac{1}{q} \Biggl( \int _{ \frac{2}{3}}^{1} \Biggl(\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{ \Theta}) \bigr\vert ^{q}- \Biggl(\kappa \sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '( \mathfrak{a}_{\Theta}) \bigr\vert ^{q}+(1-\kappa )\sum_{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr) \Biggr)\,d\kappa \Biggr) \Biggr]. \end{aligned}$$
(40)

It follows from \((\Lambda _{1}-\Lambda _{2})^{p}\leq ( \Lambda _{1}^{p}-\Lambda _{2}^{p})\) for any \(\Lambda _{1}\geq \Lambda _{2}\geq 0\) and \(p> 1\). Hence, simple calculations complete the proof. □

Remark 9

If we take \({\lambda}=2\) in Theorem 3.7, then we have

$$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}-\mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ {\frac{1}{p} \biggl( \frac{6-8^{\frac{1}{\varpi}}}{3.8^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(\varpi p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl(\frac{1}{8^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{1}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} + \frac{5}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \\ &\quad \quad{} + {\frac{1}{p} \biggl( \frac{6-2^{\frac{1}{\varpi}}}{3.2^{\frac{1+\varpi p}{\varpi}}}+ \frac{1}{(p\varpi +1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{\varpi p+1}-2. \biggl( \frac{1}{2^{\frac{1}{\varpi}}} \biggr)^{\varpi p+1}+ \biggl( \frac{2}{3} \biggr)^{\varpi p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{1}{6} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \\ &\quad \quad{} + {\frac{1}{p} \biggl( \biggl(2. \biggl(\frac{7}{8} \biggr)^{ \frac{1}{\varpi}}-1 \biggr) \biggl(\frac{7}{8} \biggr)^{p} + \frac{1}{(p\varpi +1)} \biggl[-2. \biggl( \frac{7}{8} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl(\frac{2}{3} \biggr)^{\varpi p+1}+1 \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{5}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \biggr\} , \end{aligned}$$
(41)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in (41), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{8} \biggl[\psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} )+3\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr)+3\psi \biggl(\Omega _{1}+ \Omega _{2}-\frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} + \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr]- \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{{(\Omega _{1}+ \Omega _{2}-\mathfrak{b})}}^{{(\Omega _{1}+\Omega _{2}- \mathfrak{a})}} \psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ {\frac{1}{p} \biggl( \frac{-2}{3.8^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{p+1}-2. \biggl(\frac{1}{8} \biggr)^{p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{1}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q} + \frac{5}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \\ &\quad \quad{} + {\frac{1}{p} \biggl(\frac{4}{3.2^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{ p+1}-2. \biggl( \frac{1}{2} \biggr)^{ p+1} + \biggl(\frac{2}{3} \biggr)^{p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{1}{6} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \\ &\quad \quad{} + {\frac{1}{p} \biggl( \biggl(\frac{3}{4} \biggr) \biggl( \frac{7}{8} \biggr)^{p} +\frac{1}{(p+1)} \biggl[-2. \biggl(\frac{7}{8} \biggr)^{ p+1}+ \biggl( \frac{2}{3} \biggr)^{ p+1}+1 \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{3} \bigl( \bigl\vert {\psi '}(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert { \psi '}(\Omega _{2}) \bigr\vert ^{q} \bigr) - \biggl(\frac{5}{18} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (41), then we have

    $$\begin{aligned} & \biggl\vert \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa - \biggl(\frac{3}{8} \biggr) \psi \biggl(\frac{2\mathfrak{a}+\mathfrak{b}}{3} \biggr) \\ &\quad \quad{} - \biggl(\frac{3}{8} \biggr)\psi \biggl( \frac{\mathfrak{a}+2\mathfrak{b}}{3} \biggr)- \frac{\psi (\mathfrak{a})+\psi (\mathfrak{b})}{8} \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl[{\frac{1}{p} \biggl( \frac{-2}{3.8^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{p+1}-2. \biggl(\frac{1}{8} \biggr)^{p+1} \biggr] \biggr)} \\ &\quad \quad {}+\frac{1}{q} \biggl( \frac{5}{18} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} + \frac{1}{18} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr) \\ &\quad \quad{} + {\frac{1}{p} \biggl(\frac{4}{3.2^{1+p}}+\frac{1}{(p+1)} \biggl[ \biggl(\frac{1}{3} \biggr)^{ p+1}-2. \biggl( \frac{1}{2} \biggr)^{ p+1} + \biggl(\frac{2}{3} \biggr)^{p+1} \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl(\frac{1}{6} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{6} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \\ &\quad \quad{} + {\frac{1}{p} \biggl( \biggl(\frac{3}{4} \biggr) \biggl( \frac{7}{8} \biggr)^{p} +\frac{1}{(p+1)} \biggl[-2. \biggl(\frac{7}{8} \biggr)^{ p+1}+ \biggl( \frac{2}{3} \biggr)^{ p+1}+1 \biggr] \biggr)} \\ &\quad \quad{} + \frac{1}{q} \biggl(\frac{1}{18} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{5}{18} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr], \end{aligned}$$

Theorem 3.8

Under the assumptions of Lemma 2.2and if the mapping \({|\mathfrak{\psi '}|^{q}}\) is continuous convex on the interval I, then we have the following inequality:

$$\begin{aligned} & \Biggl\vert \frac{1}{6} \Biggl[\psi \Biggl(\sum _{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum _{\Theta =1}^{{\lambda}-1}\mathfrak{a}_{\Theta} \Biggr)+4 \psi \Biggl(\sum_{\Theta =1}^{{\lambda}}\Omega _{\Theta}- \sum_{\Theta =1}^{{\lambda}-1} \frac{\mathfrak{a}_{\Theta}+\mathfrak{b}_{\Theta}}{2} \Biggr)+\psi \Biggl(\sum_{\Theta =1}^{{\lambda}} \Omega _{\Theta}-\sum_{\Theta =1}^{{ \lambda}-1} \mathfrak{b}_{\Theta} \Biggr) \Biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{\sum_{\Theta =1}^{{\lambda}-1}(\mathfrak{b}_{\Theta}-\mathfrak{a}_{\Theta})^{\varpi}} J_{ (\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1} \mathfrak{a}_{\Theta} )^{-}}^{(\varpi )} \psi \Biggl(\sum _{\Theta =1}^{{\lambda}}\Omega _{\Theta}-\sum _{ \Theta =1}^{{\lambda}-1}\mathfrak{b}_{\Theta} \Biggr) \Biggr\vert \\ &\quad \leq \sum_{\Theta =1}^{{\lambda}-1}( \mathfrak{b}_{\Theta}- \mathfrak{a}_{\Theta}) { \Biggl[ \frac{1}{p} \biggl[ \biggl( \frac{2}{6^{\frac{1}{\varpi}}}-\frac{1}{2} \biggr).\frac{1}{6^{p}} + \frac{1}{\varpi p+1} \biggl(-2 \biggl( \frac{1}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+1 \biggr) \biggr]} \\ &\quad \quad{} + \frac{1}{q} \Biggl[\frac{1}{2}\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert ^{q}-\frac{1}{8}\sum _{\Theta =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}- \frac{3}{8}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr] \\ &\quad \quad {}+\frac{1}{p} \biggl[ \biggl(2. \biggl(\frac{5}{6} \biggr)^{ \frac{1}{\varpi}}-\frac{3}{2} \biggr). \biggl( \frac{5}{6} \biggr)^{p} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl( \frac{1}{2} \biggr)^{\varpi p+1}+1 \biggr) \biggr] \\ &\quad \quad{} + \frac{1}{q} \Biggl[\frac{1}{2}\sum _{\Theta =1}^{{\lambda}} \bigl\vert \psi '( \Omega _{\Theta}) \bigr\vert ^{q}-\frac{3}{8}\sum _{\upsilon =1}^{{\lambda}-1} \bigl\vert \psi '(\mathfrak{a}_{\Theta}) \bigr\vert ^{q}- \frac{1}{8}\sum_{\Theta =1}^{{ \lambda}-1} \bigl\vert \psi '(\mathfrak{b}_{\Theta}) \bigr\vert ^{q} \Biggr] \Biggr], \end{aligned}$$

where p and q are conjugate exponents with \(p,q>1\).

Proof

The proof of the theorem is similar to the proof of Theorem 3.7. □

Remark 10

If we take \({\lambda}=2\) in Theorem 3.8, we have

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\psi (\Omega _{1}+\Omega _{2}- \mathfrak{a} )+4\psi \biggl(\Omega _{1}+\Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr)+\psi ( \Omega _{1}+ \Omega _{2}-\mathfrak{b} ) \biggr] \\ &\quad \quad{} - \frac{\Gamma (1+\varpi )}{(\mathfrak{b}-\mathfrak{a})^{\varpi}} J_{ (\Omega _{1}+\Omega _{2}- \mathfrak{a} )^{-}}^{(\varpi )} \psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl[ {\frac{1}{p} \biggl[ \biggl( \frac{2}{6^{\frac{1}{\varpi}}}-\frac{1}{2} \biggr). \frac{1}{6^{p}} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{1}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+1 \biggr) \biggr]} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{2}\bigl[ \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert \psi '( \Omega _{2}) \bigr\vert ^{q}\bigr]-\frac{1}{8} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}-\frac{3}{8} \|\psi '(\mathfrak{b}) \vert ^{q} \biggr] \\ &\quad \quad{} + {\frac{1}{p} \biggl[ \biggl(2. \biggl(\frac{5}{6} \biggr)^{ \frac{1}{\varpi}}-\frac{3}{2} \biggr). \biggl( \frac{5}{6} \biggr)^{p} + \frac{1}{\varpi p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ \frac{\varpi p+1}{\varpi}}+ \biggl( \frac{1}{2} \biggr)^{\varpi p+1}+1 \biggr) \biggr]} \\ &\quad \quad{} + \frac{1}{q} \biggl[\frac{1}{2}\bigl[ \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \bigl\vert \psi '( \Omega _{2}) \bigr\vert ^{q}\bigr]-\frac{3}{8} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}-\frac{1}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr]^{\frac{1}{q}} \biggr], \end{aligned}$$
(42)

which is a new inequality in the literature.

  • If we take \(\varpi =1\) in equation (42), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\Omega _{1}+ \Omega _{2}- \mathfrak{a} ) +4\psi \biggl(\Omega _{1}+ \Omega _{2}- \frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\Omega _{1}+\Omega _{2}-\mathfrak{b} ) \biggr\} \\ &\quad{} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\Omega _{1}+\Omega _{2}- \mathfrak{b}}^{\Omega _{1}+\Omega _{2}-\mathfrak{a}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ {\frac{1}{p} \biggl[- \frac{1}{6^{p+1}} +\frac{1}{ p+1} \biggl(-2 \biggl( \frac{1}{6} \biggr)^{ p+1}+1 \biggr) \biggr]} \\ &\quad{} + \frac{1}{q} \biggl[\frac{1}{2} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \frac{1}{2} \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}- \biggl(\frac{1}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q} + \frac{3}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \\ &\quad{} + {\frac{1}{p} \biggl[ \biggl(\frac{1}{6} \biggr). \biggl( \frac{5}{6} \biggr)^{p} +\frac{1}{p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ p+1}+ \biggl( \frac{1}{2} \biggr)^{ p+1}+1 \biggr) \biggr]} \\ &\quad{} + \frac{1}{q} \biggl[\frac{1}{2} \bigl\vert \psi '(\Omega _{1}) \bigr\vert ^{q}+ \frac{1}{2} \bigl\vert \psi '(\Omega _{2}) \bigr\vert ^{q}- \biggl(\frac{3}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr) \biggr] \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

  • If we take \(\Omega _{1}=\mathfrak{a}\), \(\Omega _{2}=\mathfrak{b}\) and \(\varpi =1\) in (42), we have

    $$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl\{ \psi (\mathfrak{a} ) +4\psi \biggl(\frac{\mathfrak{a}+\mathfrak{b}}{2} \biggr) +\psi (\mathfrak{b} ) \biggr\} - \frac{1}{(\mathfrak{b}-\mathfrak{a})} \int _{\mathfrak{a}}^{ \mathfrak{b}}\psi (\varkappa )\,d\varkappa \biggr\vert \\ &\quad \leq (\mathfrak{b}-\mathfrak{a}) \biggl\{ {\frac{1}{p} \biggl[- \frac{1}{6^{p+1}} +\frac{1}{ p+1} \biggl(-2 \biggl( \frac{1}{6} \biggr)^{ p+1}+1 \biggr) \biggr]} + \frac{1}{q} \biggl[\frac{3}{8} \bigl\vert \psi '( \mathfrak{a}) \bigr\vert ^{q}+ \frac{1}{8} \bigl\vert \psi '(\mathfrak{b}) \bigr\vert ^{q} \biggr] \\ &\quad \quad{} + { \biggl[\frac{1}{p} \biggl(\frac{1}{6} \biggr). \biggl( \frac{5}{6} \biggr)^{p} +\frac{1}{p+1} \biggl(-2 \biggl(\frac{5}{6} \biggr)^{ p+1}+ \biggl( \frac{1}{2} \biggr)^{ p+1}+1 \biggr) \biggr]} \\ &\quad \quad {}+ \frac{1}{q} \biggl[\frac{1}{8} \bigl\vert \psi '(\mathfrak{a}) \bigr\vert ^{q}+ \frac{3}{8} \bigl\vert \psi '( \mathfrak{b}) \bigr\vert ^{q} \biggr] \biggr\} , \end{aligned}$$

    which is a new inequality in the literature.

4 Applications

4.1 Applications to numerical quadrature rule

We now look at how the integral inequalities created in the previous section can be utilized to approximate composite quadrature rules in which it turns out to have a significantly lower error than what can be achieved using older techniques [28, 29].

Theorem 4.1

Under the assumptions of Theorem 3.1for \(\varpi =1\), if \(I_{\epsilon}:\Omega _{1}=\xi _{0}<\xi _{1}<\xi _{2}<\cdots<\xi _{ \epsilon -1}<\xi _{\epsilon}=\Omega _{2} \) is a partition of \([\Omega _{1},\Omega _{2}]\) and \(\xi _{\gamma ,1}, \xi _{\gamma ,2}\in [\xi _{{\gamma}}, \xi _{{\gamma +1}}]\), with \(\mathfrak{h}_{\gamma}=\xi _{\gamma +1}-\xi _{\gamma}\) for all \(\gamma =0,1,\ldots,\epsilon -1\), then we have:

$$\begin{aligned} \int _{(\xi _{0}+\xi _{\epsilon}-\xi _{2})}^{(\xi _{0}+\xi _{\epsilon}- \xi _{1})} \psi (\xi )\,d\xi =B(I_{\epsilon},\psi )+R(I_{\epsilon}, \psi ), \end{aligned}$$

where

$$\begin{aligned} B(I_{\epsilon},\psi )&= \biggl(\frac{3}{8} \biggr)\sum _{\gamma =0}^{ \epsilon -1}\psi \biggl(\xi _{\gamma}+\xi _{\gamma +1}- \biggl( \frac{2\mathfrak{\xi _{\gamma ,1}}+\mathfrak{\xi _{\gamma ,2}}}{3} \biggr) \biggr) \mathfrak{h}_{\gamma} \\ &\quad{} + \biggl(\frac{3}{8} \biggr)\sum_{\gamma =0}^{\epsilon -1} \psi \biggl(\xi _{\gamma}+\xi _{\gamma +1}- \biggl( \frac{\mathfrak{\xi _{\gamma ,1}}+2\mathfrak{\xi _{\gamma ,2}}}{3} \biggr) \biggr)\mathfrak{h}_{\gamma} \\ &\quad{} + \sum_{\gamma =0}^{\epsilon -1} \frac{\psi (\xi _{\gamma}+\xi _{\gamma +1}-\mathfrak{\xi _{\gamma ,1}})+\psi (\xi _{\gamma}+\xi _{\gamma +1} -\xi _{\gamma ,2})}{8}\mathfrak{h}_{\gamma} \end{aligned}$$

and the remainder term satisfies the estimation:

$$\begin{aligned} \bigl\vert R(I_{\epsilon},\psi ) \bigr\vert &\leq \Biggl[ \Biggl\{ { \frac{17}{576}} \sum_{\gamma =0}^{\epsilon -1} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '( \xi _{\gamma +1}) \bigr\vert \bigr] \mathfrak{h}_{\gamma}^{2} \\ &\quad {} - \Biggl({ \frac{251}{41{,}472}} \sum_{\gamma =0}^{\epsilon -1} \bigl\vert \psi '( \xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2}+{ \frac{973}{41{,}472}}\sum_{\gamma =0}^{\epsilon -1} \bigl\vert \psi '(\xi _{ \gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \Biggr) \Biggr\} \\ &\quad{} + \Biggl\{ {\frac{1}{36}}\sum_{\gamma =0}^{\epsilon -1} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{\gamma +1}) \bigr\vert \bigr] \mathfrak{h}_{\gamma}^{2} \\ &\quad {}- \Biggl({\frac{1}{72}} \sum_{ \gamma =0}^{\epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{ \gamma}^{2}+{ \frac{1}{72}}\sum_{\gamma =0}^{\epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \Biggr) \Biggr\} \\ &\quad{} + \Biggl\{ {\frac{17}{576}}\sum_{\gamma =0}^{\epsilon -1} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{\gamma +1}) \bigr\vert \bigr] \mathfrak{h}_{\gamma}^{2} \\ &\quad {}- \Biggl({\frac{973}{41{,}472}} \sum_{\gamma =0}^{\epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{ \gamma}^{2}+{ \frac{251}{41{,}472}}\sum_{\gamma =0}^{ \epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \Biggr) \Biggr\} \Biggr]. \end{aligned}$$

Proof

Applying Theorem 3.1 with \({\lambda}=2\) and \(\varpi =1\) on interval \([\xi _{\gamma},\xi _{\gamma +1}]\), \(\gamma =0,1 ,\ldots, \epsilon -1\), we obtain

$$\begin{aligned} & \biggl\vert \biggl(\frac{3}{8} \biggr)\psi \biggl(\xi _{\gamma}+\xi _{ \gamma +1}- \biggl( \frac{2\mathfrak{\xi _{\gamma ,1}}+\mathfrak{\xi _{\gamma ,2}}}{3} \biggr) \biggr)\mathfrak{h}_{\gamma} + \biggl( \frac{3}{8} \biggr) \psi \biggl(\xi _{\gamma}+\xi _{\gamma +1} + \biggl( \frac{\mathfrak{\xi _{\gamma ,1}}+2\mathfrak{\xi _{\gamma ,2}}}{3} \biggr) \biggr) \mathfrak{h}_{\gamma} \\ &\quad \quad{} + \frac{\psi (\xi _{\gamma}+\xi _{\gamma +1}-\mathfrak{\xi _{\gamma ,1}})+\psi (\xi _{\gamma}+\xi _{\gamma +1}-\xi _{\gamma ,2})}{8} \mathfrak{h}_{\gamma} - \int _{(\xi _{\gamma}+\xi _{\gamma +1}-\xi _{ \gamma ,2})}^{(\xi _{\gamma}+\xi _{\gamma +1}-\xi _{\gamma ,1})} \psi (\xi )\,d\xi \biggr\vert \\ &\quad \leq \biggl[ \biggl\{ \frac{17}{576} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{\gamma +1}) \bigr\vert \bigr]\mathfrak{h}_{\gamma}^{2} \\ &\quad \quad {}- \biggl( \frac{251}{41{,}472} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} + \frac{973}{41{,}472} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \biggr) \biggr\} \\ &\quad \quad{} + \biggl\{ \frac{1}{36} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{ \gamma +1}) \bigr\vert \bigr]\mathfrak{h}_{\gamma}^{2} \\ &\quad \quad {}- \biggl(\frac{1}{72} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} +\frac{1}{72} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \biggr) \biggr\} \\ &\quad \quad{} + \biggl\{ \frac{17}{576} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{ \gamma +1}) \bigr\vert \bigr]\mathfrak{h}_{\gamma}^{2} \\ &\quad \quad {}- \biggl(\frac{973}{41{,}472} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} +\frac{251}{41{,}472} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \biggr) \biggr\} \biggr]. \end{aligned}$$
(43)

Summing (43) over 0 to \(\epsilon -1\) and using the triangular inequality we obtain the above estimation. □

Theorem 4.2

Under the assumptions of Theorem 3.2for \(\varpi =1\), if \(I_{\epsilon}:\Omega _{1}=\xi _{0}<\xi _{1}<\xi _{2}<\cdots<\xi _{ \epsilon -1}<\xi _{\epsilon}=\Omega _{2} \) is a partition of \([\Omega _{1},\Omega _{2}]\) and \(\xi _{\gamma ,1}, \xi _{\gamma ,2}\in [\xi _{\gamma},\xi _{\gamma +1}]\), with \(\mathfrak{h}_{\gamma}=\xi _{\gamma +1}-\xi _{\gamma}\) for all \(\gamma =0,1,\ldots,\epsilon -1\), then we have:

$$\begin{aligned} \int _{(\xi _{0}+\xi _{\epsilon}-\xi _{2})}^{(\xi _{0}+\xi _{\epsilon}- \xi _{1})} \psi (\xi )\,d\xi =B(I_{\epsilon},\psi )+R(I_{\epsilon}, \psi ), \end{aligned}$$

where

$$\begin{aligned} B(I_{\epsilon},\psi )&=\frac{1}{6} \Biggl[\sum _{\gamma =0}^{\epsilon -1} \psi (\xi _{\gamma}+\xi _{\gamma +1}-\xi _{\gamma ,1})\mathfrak{h}_{ \gamma}+4\sum _{\gamma =0}^{\epsilon -1}\psi \biggl(\xi _{\gamma}+ \xi _{\gamma +1}-\frac{\xi _{\gamma ,1}+x_{i,2}}{2} \biggr) \mathfrak{h}_{\gamma} \\ &\quad{} + \sum_{\gamma =0}^{\epsilon -1}\psi (\xi _{\gamma}+\xi _{\gamma +1}- \xi _{\gamma ,2}) \mathfrak{h}_{\gamma} \Biggr] \end{aligned}$$

and the remainder term satisfies the estimation:

$$\begin{aligned} \bigl\vert R_{\varpi}(I_{\epsilon},\psi ) \bigr\vert &\leq \Biggl[{\frac{5}{72}} \sum_{\gamma =0}^{\epsilon -1} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '( \xi _{\gamma +1}) \bigr\vert \bigr] \mathfrak{h}_{\gamma}^{2} \\ &\quad {}-{\frac{61}{1296}}\sum _{\gamma =0}^{\epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} -{\frac{29}{1296}}\sum_{\gamma =0}^{ \epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \Biggr] \\ &\quad{} + \Biggl[{\frac{5}{72}}\sum_{\gamma =0}^{\epsilon -1} \bigl[ \bigl\vert \psi '(\xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{\gamma +1}) \bigr\vert \bigr] \mathfrak{h}_{\gamma}^{2} \\ &\quad {}-{\frac{29}{1296}}\sum _{\gamma =0}^{ \epsilon -1} \bigl\vert \psi '(\xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} -{ \frac{61}{1296}}\sum_{\gamma =0}^{\epsilon -1} \bigl\vert \psi '( \xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \Biggr]. \end{aligned}$$

Proof

Applying Theorem 3.2 with \({\lambda}=2\) and \(\varpi =1\) on interval \([\xi _{\gamma},\xi _{\gamma +1}]\), \(\gamma =0,1 ,\ldots, \epsilon -1\), we obtain

$$\begin{aligned} & \biggl\vert \frac{1}{6} \biggl[\psi (\xi _{\gamma}+\xi _{\gamma +1}-\xi _{ \gamma ,1}) \mathfrak{h}_{\gamma} +4\psi \biggl(\xi _{\gamma}+\xi _{ \gamma +1}-\frac{\xi _{\gamma ,1}+\xi _{\gamma ,2}}{2} \biggr) \mathfrak{h}_{\gamma} \\ &\quad \quad{}+\psi (\xi _{\gamma}+\xi _{\gamma +1}-\xi _{\gamma ,2}) \mathfrak{h}_{\gamma} \biggr] - \int _{(\xi _{\gamma}+\xi _{\gamma +1}- \xi _{\gamma ,2})}^{(\xi _{\gamma}+\xi _{\gamma +1}-\xi _{\gamma ,1})} \psi (\xi )\,d\xi \biggr\vert \\ &\quad \leq \biggl[\frac{5}{72} \bigl[ \bigl\vert \psi '( \xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{ \gamma +1}) \bigr\vert \bigr]\mathfrak{h}_{\gamma}^{2} -\frac{61}{1296} \bigl\vert \psi '( \xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2}- \frac{29}{1296} \bigl\vert \psi '( \xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \biggr] \\ &\quad \quad{}+ \biggl[\frac{5}{72} \bigl[ \bigl\vert \psi '( \xi _{\gamma}) \bigr\vert + \bigl\vert \psi '(\xi _{ \gamma +1}) \bigr\vert \bigr]\mathfrak{h}_{\gamma}^{2} -\frac{29}{1296} \bigl\vert \psi '( \xi _{\gamma ,1}) \bigr\vert \mathfrak{h}_{\gamma}^{2} -\frac{61}{1296} \bigl\vert \psi '( \xi _{\gamma ,2}) \bigr\vert \mathfrak{h}_{\gamma}^{2} \biggr]. \end{aligned}$$
(44)

Summing (44) over 0 to \(\epsilon -1\) and utilizing the triangular inequality we obtain the above result. □

5 Conclusion

In this study, the main finding is novel Newton–Simpson-type inequalities involving a fractional integral operator via majorization. This novel framework is the convolution of the majorization concept and estimation of definite integrals. Adopting the novel approach, we extended the study of Newton–Simpson-type integral inequalities using power-mean, Young’s, and Hölder’s integral inequalities. Finally, some applications to the quadrature rule are presented. Our approach may have further implementations in the theory of majorization. It is interesting to extend such findings for other convexities. We presume that our newly announced concept will be the focus of much research in this fascinating field of inequalities and analysis. The incredible methods and marvellous concepts in this article can be expanded and enlarged to coordinates and fractional integrals. Our long-term plan is to continue in this way with our research.