1 Introduction

Let \(\mathcal{A}\) be the class of functions

$$ f(z)=z+\sum_{n=2}^{\infty }a_{n}z^{n}$$
(1.1)

analytic in the open unit disc \(\mathfrak{A}=\{z\in \mathbb{C} : \vert z \vert <1 \}\), and let \(\mathcal{S}\) be the class of functions in \(\mathcal{A}\) that are univalent in \(\mathfrak{A}\). Also let \(\mathcal{S}^{\ast }\), \(\mathcal{C}\), \(\mathcal{K}\), and \(\mathcal{C}^{\ast }\) be the subclasses of \(\mathcal{A}\) consisting of all functions that are starlike, convex, close-to-convex, and quasiconvex, respectively; for details, see [1].

Let f and g be analytic in \(\mathfrak{A}\). We say that f is subordinate to g, written as \(f(z)\prec g(z)\), if there exists a Schwarz function w that is analytic in \(\mathfrak{A}\) with \(w(0)=0\) and \(\vert w(z) \vert <1\) (\(z\in \mathfrak{A}\)) and such that \(f(z)=g(w(z)) \). In particular, when g is univalent, then such a subordination is equivalent to \(f(0)=g(0)\) and \(f(\mathfrak{A}) \subseteq g(\mathfrak{A})\); see [1].

Two points A and \(A^{\prime }\) are said to be symmetrical with respect to M if M is the midpoint of the line segment \(AA^{\prime }\). Sakaguchi [2] introduced and studied the class \(\mathcal{S} _{s}^{\ast }\) of starlike functions with respect to symmetrical points z and −z belonging to the open unit disc \(\mathfrak{A}\). The class \(\mathcal{S}_{s}^{\ast }\) includes the classes of convex and odd starlike functions with respect to the origin. It was shown [2] that a necessary and sufficient condition for \(f ( z ) \in \mathcal{S}_{s}^{\ast }\) to be univalent and starlike with respect to symmetrical points in \(\mathfrak{A}\) is that

$$ \frac{2zf^{\prime }(z)}{f(z)-f(-z)}\in \mathcal{P}, \quad z\in \mathfrak{A}. $$

Das and Singh [3] defined the classes \(\mathcal{C}_{s}\) of convex functions with respect to symmetrical points and showed that a necessary and sufficient condition for \(f ( z ) \in \mathcal{C}_{s}\) is that

$$ \frac{2 ( zf^{\prime }(z) ) ^{\prime }}{ ( f(z)-f(-z) ) ^{\prime }}\in \mathcal{P}, \quad z\in \mathfrak{A}. $$

It is also well known [3] that \(f ( z ) \in \mathcal{C}_{s}\) if and only if \(zf ( z ) \in \mathcal{S} _{s}^{\ast }\).

The classes \(k-\mathcal{CV}\) and \(k-\mathcal{ST}\) with \(k\geq 0\) denote the famous classes of k-uniformly convex and k-starlike functions, respectively, introduced by Kanas and Wisniowska, respectively. For some details see [4,5,6,7].

Consider the domain

$$ \varOmega _{k}= \bigl\{ u+iv;u>k\sqrt{ ( u-1 ) ^{2}+v^{2}} \bigr\} . $$
(1.2)

For fixed k, \(\varOmega _{k}\) represents the conic region bounded successively by the imaginary axis (\(k=0\)), the right branch of a hyperbola (\(0< k<1\)), a parabola (\(k=1\)), and an ellipse (\(k>1\)). This domain was studied by Kanas [4,5,6]. The function \(p_{k}\) with \(p_{k} ( 0 ) =1\) and \(p_{k}^{\prime } ( 0 ) >0\) plays the role of extremal and is given by

$$ p_{k} ( z ) = \textstyle\begin{cases} \frac{1+z}{1-z}, &k=0, \\ 1+\frac{2}{\pi ^{2}} ( \log \frac{1+\sqrt{z}}{1-\sqrt{z}} ) ^{2}, &k=1, \\ 1+\frac{2}{1-k^{2}}\sinh ^{2} [ ( \frac{2}{\pi }\arccos k ) \operatorname{arc}\tanh \sqrt{z} ] ,&0< k< 1, \\ 1+\frac{1}{k^{2}-1}\sin [ \frac{\pi }{2R ( t ) } \int _{0}^{\frac{u ( z ) }{\sqrt{t}}}\frac{1}{\sqrt{1-x ^{2}}\sqrt{1- ( tx ) ^{2}}}\, dx ] +\frac{1}{k ^{2}-1},&k>1, \end{cases} $$
(1.3)

with \(u(z)=\frac{z-\sqrt{t}}{1-\sqrt{tz}}\), \(t\in (0,1)\), \(z\in E\), and t chosen such that \(k=\cosh ( \frac{\pi R^{\prime }(t)}{4R(t)} ) \), where \(R(t)\) is Legendre’s complete elliptic integral of the first kind, and \(R^{\prime }(t)\) is the complementary integral of \(R(t)\) (see [5, 6]). Let \(\mathcal{P}_{p_{k}}\) denote the class of all functions \(p ( z ) \) that are analytic in E with \(p ( 0 ) =1\) and \(p ( z ) \prec p_{k} ( z ) \) for \(z\in E\). Clearly, we can see that \(\mathcal{P}_{p_{k}}\subset \mathcal{P}\), where \(\mathcal{P}\) is the class of functions with positive real parts (see [1]). More precisely,

$$ \mathcal{P}_{p_{k}}\subset \mathcal{P} \biggl( \frac{k}{1+k} \biggr) \subset \mathcal{P}. $$

For more detail regarding conic domains and related classes, see [4,5,6, 8,9,10,11].

Recently, Noor [12] defined the classes \(k-\mathcal{ST}_{s}\), \(k-\mathcal{UCV}_{s}\), and \(k-\mathcal{UK}_{s}\) of k-uniformly starlike, convex, and close to convex functions with respect to symmetrical points and studied various interesting properties for these classes.

We consider the following one-parameter families of integral operators:

$$\begin{aligned}& \mathcal{I}_{\beta }^{\alpha }f ( z ) =\frac{ ( \beta +1 ) ^{\alpha }}{\varGamma ( \alpha ) z^{\beta }} \int _{0}^{z}t^{\beta -1} \biggl( \log \frac{z}{t} \biggr) ^{\alpha -1}f ( t ) \,dt, \end{aligned}$$
(1.4)
$$\begin{aligned}& \mathfrak{L}_{\beta }^{\alpha }f ( z ) =\binom{\alpha + \beta }{\beta } \frac{\alpha }{z^{\beta }} \int _{0}^{z}t^{\beta -1} \biggl( 1- \frac{t}{z} \biggr) ^{\alpha -1}f ( t ) \,dt, \end{aligned}$$
(1.5)

and

$$ \mathfrak{J}_{\beta }f ( z ) =\frac{\beta +1}{z^{\beta }} \int _{0}^{z}t^{\beta -1}f ( t ) \,dt, $$
(1.6)

where \(\alpha \geq 0\), \(\beta >-1\), and Γ is the familiar gamma function. We note that \(\mathfrak{J}_{\beta }:\mathcal{A}\rightarrow \mathcal{A}\) defined by (1.6) is the generalized Bernardi operator introduced in [13] for \(\beta =1,2,3,\ldots \) , and for any real number \(\beta >-1\), this operator was studied by Owa and Srivastava [14, 15]. For the operators \(\mathfrak{L}_{\beta }^{\alpha }\) and \(\mathcal{I}_{\beta } ^{\alpha }\), we refer to [16, 17]. Also, for \(\alpha =1\), we see that

$$ \mathfrak{J}_{\beta }f ( z ) =\mathfrak{L}_{\beta }^{1}f ( z ) =\mathcal{I}_{\beta }^{1}f ( z ) . $$

We can represent these operators as follows:

$$\begin{aligned}& \begin{aligned}[b] \mathcal{I}_{\beta }^{\alpha }f ( z ) &=z+\sum _{n=2}^{ \infty } \biggl( \frac{\beta +1}{\beta +n} \biggr) ^{\alpha }a_{n}z ^{n} \\ &= \Biggl( z+\sum_{n=2}^{\infty } \biggl( \frac{\beta +1}{\beta +n} \biggr) ^{\alpha }z^{n} \Biggr) \ast f ( z ) , \end{aligned} \end{aligned}$$
(1.7)
$$\begin{aligned}& \begin{aligned}[b] \mathfrak{L}_{\beta }^{\alpha }f ( z ) &=z+\sum _{n=2}^{ \infty }\frac{\varGamma ( \beta +n ) \varGamma ( \alpha + \beta +1 ) }{\varGamma ( \alpha +\beta +n ) \varGamma ( \beta +1 ) }a_{n}z^{n} \\ &=\binom{\alpha +\beta }{\beta }z{}_{2}F_{1} ( 1,\beta ; \alpha +\beta ;z ) \ast f ( z ) , \end{aligned} \end{aligned}$$
(1.8)

and

$$ \mathfrak{J}_{\beta }f ( z ) =z+\sum_{n=2}^{\infty } \biggl( \frac{\beta +1}{\beta +n} \biggr) a_{n}z^{n}, $$
(1.9)

where \({}_{2}F_{1}\) denotes the Gaussian hypergeometric function, and the symbol ∗ stands for the convolution (Hadamard product).

By (1.7) and (1.8) we can easily derive the identities

$$ z \bigl( \mathcal{I}_{\beta }^{\alpha }f ( z ) \bigr) ^{\prime }= ( \beta +1 ) \mathcal{I}_{\beta }^{\alpha -1}f ( z ) -\beta \mathcal{I}_{\beta }^{\alpha }f ( z ) $$
(1.10)

and

$$ z \bigl( \mathfrak{L}_{\beta }^{\alpha }f ( z ) \bigr) ^{\prime }= ( \alpha +\beta ) \mathfrak{L}_{\beta }^{ \alpha -1}f ( z ) - ( \alpha + \beta -1 ) \mathfrak{L}_{\beta }^{\alpha }f ( z ) , $$
(1.11)

where \(\alpha \geq 1\) and \(\beta >-1\). From (1.10) we have

$$ \biggl[ \frac{1}{1+\beta }p ( z ) +\frac{\beta }{1+\beta } \biggr] = \frac{\mathcal{I}_{\beta }^{\alpha -1}f ( z ) }{\mathcal{I}_{\beta }^{\alpha }f ( z ) } $$

with

$$ p ( z ) =\frac{z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }f ( z ) }. $$

With the help of these integral operators, we now define the following classes.

Definition 1.1

Let \(f ( z ) \in \mathcal{A}\). Then \(f ( z ) \in k-\mathcal{ST}_{s} ( \alpha ,\beta ) \), \(\alpha \geq 0\), \(\beta >-1\), if \(\mathcal{I}_{\beta }^{\alpha }f ( z ) \in k-\mathcal{ST}_{s}\) in \(\mathfrak{A}\).

Definition 1.2

Let \(f ( z ) \in \mathcal{A}\). Then \(f ( z ) \in k-\mathcal{ST}_{s}^{\ast } ( \alpha ,\beta ) \), \(\alpha \geq 0\), \(\beta >-1\), if \(\mathfrak{L}_{\beta }^{\alpha }f ( z ) \in k-\mathcal{ST}_{s}\) in \(\mathfrak{A}\).

Definition 1.3

Let \(f ( z ) \in \mathcal{A}\). Then \(f ( z ) \in k-\mathcal{UK}_{s} ( \alpha ,\beta ) \), \(\alpha \geq 0\), \(\beta >-1\), if \(\mathcal{I}_{\beta }^{\alpha }f ( z ) \in k-\mathcal{UK}_{s}\) in \(\mathfrak{A}\).

Definition 1.4

Let \(f ( z ) \in \mathcal{A}\). Then \(f ( z ) \in k-\mathcal{UK}_{s}^{\ast } ( \alpha ,\beta ) \), \(\alpha \geq 0\), \(\beta >-1\), if \(\mathfrak{L}_{\beta }^{\alpha }f ( z ) \in k-\mathcal{UK}_{s}\) in \(\mathfrak{A}\).

2 A set of lemmas

In this section, we give the following lemmas, which will be used in our investigation.

Lemma 2.1

([4])

Let \(k\geq 0\), and let \(\beta _{1},\gamma \in \mathbb{C} \) be such that \(\beta _{1}\neq 0\) and \(\mathfrak{Re} \{ \frac{\beta _{1}k}{k+1}+ \gamma \} >0\). Suppose that \(p ( z ) \) is analytic in \(\mathfrak{A}\) with \(p ( 0 ) =1\) and satisfies

$$ \biggl( p ( z ) +\frac{zp^{\prime } ( z ) }{ \beta _{1}p ( z ) +\gamma } \biggr) \prec p_{k} ( z ) $$
(2.1)

and that \(q ( z ) \) is an analytic function satisfying

$$ q ( z ) +\frac{zq^{\prime } ( z ) }{\beta _{1}q ( z ) +\gamma }=p_{k} ( z ) . $$
(2.2)

Then \(q ( z ) \) is univalent, \(p ( z ) \prec q ( z ) \prec p_{k} ( z ) \), and \(q ( z ) \) is the best dominant of (2.1) given as

$$ q ( z ) = \biggl[ \beta _{1} \int _{0}^{1} \biggl( t^{ \beta _{1}+\gamma -1}\exp \int _{z}^{tz}\frac{p_{k} ( u ) -1}{u}\,du \biggr) \,dt \biggr] ^{-1}-\frac{\gamma }{\beta _{1}}. $$
(2.3)

Lemma 2.2

([18])

Let \(\lambda ,\rho \in \mathbb{C}\) be such that \(\lambda \neq 0\), and let \(\phi (z)\in \mathcal{A}\) be convex and univalent in \(\mathbb{U}\) with \(\mathfrak{Re} \{ \lambda \phi (z)+\rho \} >0\) (\(z\in \mathbb{U} \)). Also, let \(q(z)\in \mathcal{A}\) and \(q(z)\prec \phi (z)\). If \(p(z)\) is analytic in \(\mathbb{U} \) with \(p ( 0 ) =1\) and satisfies

$$ \biggl( p(z)+\frac{zp^{\prime }(z)}{\lambda q(z)+\rho } \biggr) \prec \phi (z), $$
(2.4)

then \(p(z)\prec \phi (z)\).

3 The main results and their consequences

Our first main result is stated as the following:

Theorem 3.1

Let \(f ( z ) \in k-\mathcal{ST}_{s} ( \alpha ,\beta ) \). Then the odd function

$$ \psi ( z ) =\frac{1}{2} \bigl[ f ( z ) -f ( -z ) \bigr] \in k- \mathcal{ST} ( \alpha ,\beta ) . $$

Proof

Note that

$$ \mathcal{I}_{\beta }^{\alpha }\psi ( z ) =\frac{1}{2} \bigl[ \mathcal{I}_{\beta }^{\alpha }f ( z ) -\mathcal{I} _{\beta }^{\alpha }f ( -z ) \bigr] . $$

We want to show that \(\mathcal{I}_{\beta }^{\alpha }\psi ( z ) \in k-\mathcal{ST}\). Now, for \(f ( z ) \in k- \mathcal{ST}_{s} ( \alpha ,\beta ) \), this implies that \(\mathcal{I}_{\beta }^{\alpha }f ( z ) \in k-\mathcal{ST} _{s}\). Then, for \(z\in \mathfrak{A}\),

$$\begin{aligned} \frac{z ( \mathcal{I}_{\beta }^{\alpha }\psi ( z ) ) ^{{\prime }}}{\mathcal{I}_{\beta }^{\alpha }\psi ( z ) } =&\frac{1}{2} \biggl[ \frac{2z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{{\prime }}}{\mathcal{I}_{ \beta }^{\alpha }f ( z ) -\mathcal{I}_{\beta }^{\alpha }f ( -z ) }+ \frac{2 ( -z ) ( \mathcal{I} _{\beta }^{\alpha }f ( -z ) ) ^{{\prime }}}{ \mathcal{I}_{\beta }^{\alpha }f ( -z ) -\mathcal{I}_{ \beta }^{\alpha }f ( z ) } \biggr] \\ =&\frac{1}{2} \bigl[ h_{1} ( z ) +h_{2} ( z ) \bigr] \\ =&h ( z ) . \end{aligned}$$

and \(h_{i} ( z ) \prec p_{k} ( z ) \), \(i=1,2\). This implies that \(h ( z ) \prec p_{k} ( z ) \) in \(\mathfrak{A}\), and therefore \(\mathcal{I}_{\beta } ^{\alpha }\psi ( z ) \in k-\mathcal{ST}\). Consequently, \(\psi ( z ) \in k-\mathcal{ST} ( \alpha ,\beta ) \) in \(\mathfrak{A.}\) □

Similarly, we can prove that if \(f ( z ) \in k- \mathcal{ST}_{s}^{\ast } ( \alpha ,\beta ) \), then

$$ \phi ( z ) =\frac{1}{2} \bigl[ f ( z ) -f ( -z ) \bigr] \in k- \mathcal{ST}^{\ast } ( \alpha ,\beta ) . $$

Taking \(\alpha =0\), we obtain the following result proved by Noor [12].

Corollary 3.2

Let \(f ( z ) \in k-\mathcal{ST}_{s}\). Then the odd function

$$ \psi ( z ) =\frac{1}{2} \bigl[ f ( z ) -f ( -z ) \bigr] \in k- \mathcal{ST}. $$

Note that, for \(k=\alpha =0\), the function \(\psi ( z ) = \frac{1}{2} [ f ( z ) -f ( -z ) ] \) is a starlike function in \(\mathfrak{A}\); see [2].

Theorem 3.3

Let \(\alpha \geq 2\) and \(\beta >-1\). Then \(k-\mathcal{ST} ( \alpha -1,\beta ) \subset k-\mathcal{ST} ( \alpha ,\beta ) \).

Proof

Let \(f ( z ) \in k-\mathcal{ST} ( \alpha -1,\beta ) \) and set

$$ p ( z ) =\frac{z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }f ( z ) }. $$
(3.1)

Note that \(p ( z ) \) is analytic in \(\mathfrak{A}\) with \(p ( 0 ) =1\).

From (3.1) and identity (1.10) we have

$$ \frac{\mathcal{I}_{\beta }^{\alpha -1}f ( z ) }{ \mathcal{I}_{\beta }^{\alpha }f ( z ) }= ( 1-\gamma ) p ( z ) +\gamma $$
(3.2)

with

$$ \gamma =\frac{\beta }{\beta +1}. $$
(3.3)

Logarithmic differentiation of (3.2) yields

$$ \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}f ( z ) }= \biggl\{ p ( z ) +\frac{ ( 1-\gamma ) zp^{{\prime }} ( z ) }{ ( 1-\gamma ) zp ( z ) +\gamma } \biggr\} , $$

and thus it follows that

$$ \biggl( p ( z ) +\frac{zp^{{\prime }} ( z ) }{zp ( z ) +\beta } \biggr) \prec p_{k} ( z ) . $$

Using Lemma 2.1, we have

$$ p ( z ) \prec q ( z ) \prec p_{k} ( z ) $$

with

$$ q ( z ) = \biggl[ \int _{0}^{1} \biggl( t^{\beta } \exp \int _{z}^{tz}\frac{p_{k} ( u ) -1}{u}\,du \biggr) \,dt \biggr] ^{-1}-\beta . $$

This proves that \(f ( z ) \in k-\mathcal{ST} ( \alpha ,\beta ) \) in \(\mathfrak{A}\), and the proof is complete. □

Theorem 3.4

Let \(\alpha \geq 2\) and \(\beta >-1\). Then \(k-\mathcal{ST}^{\ast } ( \alpha -1,\beta ) \subset k-\mathcal{ST}^{\ast } ( \alpha ,\beta ) \).

Proof

Let

$$ \frac{z ( \mathfrak{L}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{\alpha }f ( z ) }=h ( z ) , $$
(3.4)

where \(h ( z ) \) is analytic in \(\mathfrak{A}\) with \(h ( 0 ) =1\).

From (3.4) and identity (1.11) we get

$$ \frac{1}{\alpha +\beta }\frac{z ( \mathfrak{L}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{ \alpha }f ( z ) }+ \biggl( 1-\frac{1}{\alpha +\beta } \biggr) = \frac{\mathfrak{L}_{\beta }^{\alpha -1}f ( z ) }{ \mathfrak{L}_{\beta }^{\alpha }f ( z ) }. $$
(3.5)

Logarithmic differentiation of (3.5), together with (3.4), gives us

$$\begin{aligned} \frac{z ( \mathfrak{L}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{\alpha -1}f ( z ) } =&h ( z ) +\frac{\frac{1}{\alpha +\beta }zh^{{\prime }} ( z ) }{\frac{1}{\alpha +\beta }h ( z ) +\frac{ \alpha +\beta -1}{\alpha +\beta }} \\ =&h ( z ) +\frac{zh^{{\prime }} ( z ) }{h ( z ) +\alpha +\beta -1}. \end{aligned}$$

Since \(f ( z ) \in k-\mathcal{ST}^{\ast } ( \alpha -1, \beta ) \), it follows that

$$ h ( z ) +\frac{zh^{{\prime }} ( z ) }{h ( z ) +\alpha +\beta -1}\prec p_{k} ( z ) . $$

Applying Lemma 2.1, we have

$$ h ( z ) \prec p_{k} ( z ) . $$

This proves our result. □

Theorem 3.5

Let \(\alpha \geq 2\) and \(\beta >-1\). Then \(k-\mathcal{ST}_{s} ( \alpha -1,\beta ) \subset k-\mathcal{ST}_{s} ( \alpha , \beta ) \).

Proof

Let \(f ( z ) \in k-\mathcal{ST}_{s} ( \alpha -1, \beta ) \). Then, using Theorems 3.1 and 3.3, we have

$$ \psi ( z ) =\frac{f ( z ) -f ( -z ) }{2}\in k-\mathcal{ST} ( \alpha -1,\beta ) \subset k- \mathcal{ST} ( \alpha ,\beta ) . $$

From this it easily follows that \(f ( z ) \in k- \mathcal{ST}_{s} ( \alpha ,\beta ) \), and this completes the proof. □

A similar result for the class \(k-\mathcal{ST}_{s}^{\ast } ( \alpha ,\beta ) \) can be easily proved.

Theorem 3.6

Let \(\alpha \geq 1\) and \(\beta >0\). Then \(k-\mathcal{UK}_{s} ( \alpha -1,\beta ) \subset k-\mathcal{UK}_{s} ( \alpha , \beta ) \).

Proof

Let \(f ( z ) \in k-\mathcal{UK}_{s} ( \alpha -1, \beta ) \). Then there exists \(g ( z ) \in k- \mathcal{ST}_{s} ( \alpha -1,\beta ) \) such that

$$ \frac{2z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}g ( z ) -\mathcal{I}_{\beta }^{\alpha -1}g ( -z ) }=\frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}\psi ( z ) }\in P, $$

where \(\psi ( z ) =\frac{\mathcal{I}_{\beta }^{\alpha -1}g ( z ) -\mathcal{I}_{\beta }^{\alpha -1}g ( -z ) }{2}\in k-\mathcal{ST} ( \alpha -1,\beta ) \subset k- \mathcal{ST} ( \alpha ,\beta ) \) in \(\mathfrak{A}\).

Let us set

$$ \frac{z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }\psi ( z ) }=p ( z ) , $$
(3.6)

where \(p ( z ) \) is analytic in \(\mathfrak{A}\) with \(p ( 0 ) =1\). Then by (3.6) and identity (1.10) we get

$$ \frac{\mathcal{I}_{\beta }^{\alpha -1}\psi ( z ) }{ \mathcal{I}_{\beta }^{\alpha }\psi ( z ) }= ( 1- \gamma ) p_{0} ( z ) +\gamma , $$

where \(p_{0} ( z ) =\frac{z ( \mathcal{I}_{\beta } ^{\alpha }\psi ( z ) ) ^{\prime }}{\mathcal{I}_{ \beta }^{\alpha }\psi ( z ) }\), and γ is given by (3.3). Now by simple computations we obtain

$$\begin{aligned} \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{z\mathcal{I}_{\beta }^{\alpha -1}\psi ( z ) } =&\frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }\psi ( z ) [ ( 1-\gamma ) p_{0} ( z ) +\gamma ] } \\ =&\frac{z [ ( z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime } ) ^{\prime } ] + \beta z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{ ( \beta +1 ) \mathcal{I}_{\beta }^{\alpha } \psi ( z ) [ ( 1-\gamma ) p_{0} ( z ) +\gamma ] } \\ =&\frac{\beta p ( z ) +p ( z ) p_{0} ( z ) +zp^{\prime } ( z ) }{ ( \beta +1 ) [ ( 1-\frac{\beta }{1+\beta } ) p_{0} ( z ) +\frac{\beta }{1+\beta } ] } \\ =&\frac{\beta p ( z ) +p ( z ) p_{0} ( z ) +zp^{\prime } ( z ) }{p_{0} ( z ) + \beta } \\ =&p ( z ) +\frac{zp^{\prime } ( z ) }{p_{0} ( z ) +\beta }. \end{aligned}$$

Since \(f ( z ) \in k-\mathcal{UK}_{s} ( \alpha -1, \beta ) \), it follows that

$$ p ( z ) +\frac{zp^{\prime } ( z ) }{p_{0} ( z ) +\beta }\in \mathcal{P}\quad \text{in }\mathfrak{A}. $$

Applying Lemma.2.2, we have \(p ( z ) \in \mathcal{P}\) in \(\mathfrak{A}\). This proves \(f ( z ) \in k-\mathcal{UK}_{s} ( \alpha ,\beta ) \) in \(\mathfrak{A}\). □

By a similar argument we can easily prove the following inclusion result.

Theorem 3.7

Let \(\alpha \geq 1\) and \(\beta >0\). Then \(k-\mathcal{UK}^{\ast } ( \alpha -1,\beta ) \subset k-\mathcal{UK}^{\ast } ( \alpha ,\beta ) \).

Theorem 3.8

Let \(f ( z ) \in k-\mathcal{ST}_{s} ( \alpha ,\beta ) \) in \(\mathfrak{A}\). Then

$$ \mathfrak{Re} \biggl\{ \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1} \varphi ( z ) } \biggr\} >0 $$

for \(\vert z \vert < R ( \beta ,\gamma _{0} ) \), where

$$ R ( \beta ,\gamma _{0} ) =\frac{ ( 1+\beta ) }{ ( 2-\gamma _{0} ) +\sqrt{ ( 2-\gamma _{0} ) ^{2}+ ( 1+\beta ) ( \beta +2\gamma _{0}-1 ) }} $$

with

$$ \gamma _{0}=\frac{k}{k+1}. $$
(3.7)

Proof

Let \(f ( z ) \in k-\mathcal{ST}_{s} ( \alpha ,\beta ) \). Then

$$ \varphi ( z ) =\frac{f ( z ) -f ( -z ) }{2}\in k-\mathcal{ST} ( \alpha ,\beta ) , $$

and hence

$$ \frac{z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }\varphi ( z ) } \in \mathcal{P} ( p_{k} ) \subset \mathcal{P} ( \gamma _{0} ) , $$

where \(\gamma _{0}\) is given by (3.7). Let

$$\begin{aligned} \frac{z ( \mathcal{I}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha }\varphi ( z ) } =&h ( z ) ,\quad h ( z ) \in \mathcal{P} ( \gamma _{0} ) , \\ =& ( 1-\gamma _{0} ) h_{0} ( z ) +\gamma _{0},\quad h_{0} ( z ) \in \mathcal{P}. \end{aligned}$$
(3.8)

Then, proceeding as in Theorem 3.5, we have

$$ \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}\varphi ( z ) }=h ( z ) +\frac{zh^{\prime } ( z ) }{p ( z ) +\beta }, $$
(3.9)

where \(p ( z ) =\frac{z ( \mathcal{I}_{\beta }^{ \alpha }\varphi ( z ) ) ^{\prime }}{\mathcal{I} _{\beta }^{\alpha }\varphi ( z ) }\in \mathcal{P} ( \gamma ) \). Using (3.8) and \(p ( z ) = ( 1- \gamma _{0} ) p_{0} ( z ) +\gamma _{0}\) in (3.9), we have

$$ \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}\varphi ( z ) }= ( 1-\gamma _{0} ) h_{0} ( z ) + \gamma _{0}+\frac{ ( 1-\gamma _{0} ) zh_{0}^{\prime } ( z ) }{ ( 1-\gamma _{0} ) p_{0} ( z ) + \gamma _{0}+\beta } $$

with \(h_{0} ( z ) \in \mathcal{P}\), \(p_{0} ( z ) \in \mathcal{P}\), that is,

$$ \frac{1}{1-\gamma _{0}} \biggl[ \frac{z ( \mathcal{I}_{\beta }^{ \alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}\varphi ( z ) }-\gamma _{0} \biggr] =h_{0} ( z ) +\frac{zh_{0}^{\prime } ( z ) }{ ( 1- \gamma _{0} ) p_{0} ( z ) +\gamma _{0}+\beta }. $$

Using the distortion result for the class \(\mathcal{P}\), we obtain

$$\begin{aligned} &\mathfrak{Re} \biggl[ \frac{1}{1-\gamma _{0}} \biggl\{ \frac{z ( \mathcal{I}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathcal{I}_{\beta }^{\alpha -1}\varphi ( z ) }-\gamma _{0} \biggr\} \biggr] \\ &\quad \geq \mathfrak{Re}h_{0} ( z ) \biggl\{ 1-\frac{\frac{2r}{1-r^{2}}}{ ( 1-\gamma _{0} ) \frac{1-r}{1+r}+ ( \gamma _{0}+\beta ) } \biggr\} \\ &\quad =\mathfrak{Re}h_{0} ( z ) \biggl\{ 1-\frac{2r}{ ( 1- \gamma _{0} ) ( 1+r ) ^{2}+ ( 1-r^{2} ) ( \gamma _{0}+\beta ) } \biggr\} . \end{aligned}$$
(3.10)

Right-hand side of (3.10) is greater than or equal to zero for \(\vert z \vert < R ( \beta , \gamma _{0} ) \), where \(R ( \beta ,\gamma _{0} ) \) is the least positive root of the equation

$$ T ( r ) := ( 1-\beta -2\gamma _{0} ) r^{2}-2 ( 2-\gamma _{0} ) r+ ( 1+\beta ) =0, $$

that is,

$$\begin{aligned} R ( \beta ,\gamma _{0} ) =&\frac{2 ( 2-\gamma _{0} ) -\sqrt{4 ( 2-\gamma _{0} ) ^{2}+4 ( 1+\beta ) ( \beta +2\gamma _{0}-1 ) }}{2 ( 1-\beta -2\gamma _{0} ) } \\ =&\frac{ ( 1+\beta ) }{ ( 2-\gamma _{0} ) +\sqrt{ ( 2-\gamma _{0} ) ^{2}+ ( 1+\beta ) ( \beta +2\gamma _{0}-1 ) }}. \end{aligned}$$

The proof is completed. □

Particular Cases

  1. (i)

    For \(\beta =0\) and \(\gamma _{0}=\frac{k}{k+1}=0\) (i.e., \(k=0\)), we have \(f ( z ) \in \mathcal{S}_{s}^{\ast } ( \alpha ,0 )\) (\(\psi \in \mathcal{S}^{\ast } ( \alpha ,0 ) \)) and

    $$ R ( 0,0 ) =\frac{1}{2+\sqrt{3}}. $$
  2. (ii)

    For \(k=1\) and \(\beta =0\),

    $$ R \biggl( 0,\frac{1}{2} \biggr) =\frac{1}{3}. $$
  3. (iii)

    For \(k=1\) and \(\beta =1\),

    $$ R \biggl( 1,\frac{1}{2} \biggr) =\frac{4}{4+\sqrt{17}}. $$

Theorem 3.9

Let \(\mathfrak{L}_{\beta }^{\alpha }f ( z ) \in k- \mathcal{ST}\). Then

$$ \mathfrak{L}_{\beta }^{\alpha -1}f ( z ) \in \mathcal{S} ^{\ast } ( \gamma _{0} ) , \quad \gamma _{0}=\frac{k}{k+1} $$

for \(\vert z \vert < R_{1}\), where

$$ R_{1} ( \alpha ,\beta ,\gamma _{0} ) =\frac{\alpha +\beta }{2- \gamma _{0}+\sqrt{ ( 2-\gamma _{0} ) ^{2}+ ( \alpha + \beta ) ( 2\gamma _{0}+\alpha +\beta -2 ) }}. $$

Proof

Since \(\mathfrak{L}_{\beta }^{\alpha }f ( z ) \in k- \mathcal{ST}\), we have

$$ \frac{z ( \mathfrak{L}_{\beta }^{\alpha }f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{\alpha }f ( z ) }=h ( z ) ,\quad h ( z ) \prec p_{k} ( z ) $$

in \(\mathfrak{A}\). With a similar argument as in Theorem 3.5, we have

$$ \frac{z ( \mathfrak{L}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{\alpha -1}f ( z ) }=h ( z ) +\frac{zh^{\prime } ( z ) }{h ( z ) +\alpha +\beta -1}, $$

that is,

$$\begin{aligned} &\mathfrak{Re} \biggl[ \frac{1}{1-\gamma _{0}} \biggl\{ \frac{z ( \mathfrak{L}_{\beta }^{\alpha -1}f ( z ) ) ^{\prime }}{\mathfrak{L}_{\beta }^{\alpha -1}f ( z ) }-\gamma _{0} \biggr\} \biggr] \\ &\quad =\mathfrak{Re} \biggl[ h_{0} ( z ) +\frac{zh_{0}^{\prime } ( z ) }{ ( 1-\gamma _{0} ) h_{0} ( z ) + ( \gamma _{0}+\alpha + \beta -1 ) } \biggr] \\ &\quad \geq \mathfrak{Re}h_{0} ( z ) \biggl[ 1-\frac{\frac{2r}{1-r ^{2}}}{ ( 1-\gamma _{0} ) \frac{1-r}{1+r}+ ( \gamma _{0}+\alpha +\beta -1 ) } \biggr] , \end{aligned}$$
(3.11)

where

$$ h ( z ) = ( 1-\gamma _{0} ) h_{0} ( z ) +\gamma _{0},\quad h_{0}\in \mathcal{P}, \gamma _{0}= \frac{k}{k+1}. $$

The right-hand side of (3.11) is greater than or equal to zero for \(\vert z \vert < R_{1}\), where \(R_{1}\) is the least positive root of the equation

$$ T ( r ) := ( 2-2\gamma _{0}-\alpha -\beta ) r ^{2}-2 ( 2- \gamma _{0} ) r+\alpha +\beta =0, $$

that is,

$$\begin{aligned} R_{1} ( \alpha ,\beta ,\gamma _{0} ) =&\frac{2-\gamma _{0}-\sqrt{ ( 2-\gamma _{0} ) ^{2}+ ( \alpha +\beta ) ( 2\gamma _{0}+\alpha +\beta -2 ) }}{2 ( 2-\alpha - \beta -2\gamma _{0} ) } \\ =&\frac{\alpha +\beta }{2-\gamma _{0}+\sqrt{ ( 2-\gamma _{0} ) ^{2}+ ( \alpha +\beta ) ( 2 \gamma _{0}+\alpha +\beta -2 ) }}. \end{aligned}$$

This completes the proof. □

4 Conclusion

In this paper, we have defined some new classes of analytic functions involving integral operators. We have shown that these classes generalize the well-known classes, and already existing results can be obtained as a particular cases of our results. Inclusion relations of these classes are also a significant part of our work. We believe that the work presented in this paper will give researchers a new direction and will motivate them to explore more interesting facts on similar lines.