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1 Introduction
Let A be the class of functions

f (z) = z +
∞∑

n=2

anzn (1.1)

analytic in the open unit disc A = {z ∈ C : |z| < 1}, and let S be the class of functions in
A that are univalent in A. Also let S∗, C , K, and C∗ be the subclasses of A consisting of
all functions that are starlike, convex, close-to-convex, and quasiconvex, respectively; for
details, see [1].

Let f and g be analytic in A. We say that f is subordinate to g , written as f (z) ≺ g(z), if
there exists a Schwarz function w that is analytic in A with w(0) = 0 and |w(z)| < 1 (z ∈A)
and such that f (z) = g(w(z)). In particular, when g is univalent, then such a subordination
is equivalent to f (0) = g(0) and f (A) ⊆ g(A); see [1].

Two points A and A′ are said to be symmetrical with respect to M if M is the midpoint
of the line segment AA′. Sakaguchi [2] introduced and studied the class S∗

s of starlike
functions with respect to symmetrical points z and –z belonging to the open unit disc A.
The class S∗

s includes the classes of convex and odd starlike functions with respect to
the origin. It was shown [2] that a necessary and sufficient condition for f (z) ∈ S∗

s to be
univalent and starlike with respect to symmetrical points in A is that

2zf ′(z)
f (z) – f (–z)

∈P , z ∈A.
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Das and Singh [3] defined the classes Cs of convex functions with respect to symmetrical
points and showed that a necessary and sufficient condition for f (z) ∈ Cs is that

2(zf ′(z))′

(f (z) – f (–z))′
∈P , z ∈ A.

It is also well known [3] that f (z) ∈ Cs if and only if zf (z) ∈ S∗
s .

The classes k – CV and k – ST with k ≥ 0 denote the famous classes of k-uniformly
convex and k-starlike functions, respectively, introduced by Kanas and Wisniowska, re-
spectively. For some details see [4–7].

Consider the domain

Ωk =
{

u + iv; u > k
√

(u – 1)2 + v2
}

. (1.2)

For fixed k, Ωk represents the conic region bounded successively by the imaginary axis
(k = 0), the right branch of a hyperbola (0 < k < 1), a parabola (k = 1), and an ellipse (k > 1).
This domain was studied by Kanas [4–6]. The function pk with pk(0) = 1 and p′

k(0) > 0
plays the role of extremal and is given by

pk(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1+z
1–z , k = 0,

1 + 2
π2 (log 1+

√
z

1–
√

z )2, k = 1,

1 + 2
1–k2 sinh2[( 2

π
arccos k) arc tanh

√
z], 0 < k < 1,

1 + 1
k2–1 sin[ π

2R(t)
∫ u(z)√

t
0

1√
1–x2

√
1–(tx)2

dx] + 1
k2–1 , k > 1,

(1.3)

with u(z) = z–
√

t
1–

√
tz , t ∈ (0, 1), z ∈ E, and t chosen such that k = cosh( πR′(t)

4R(t) ), where R(t) is Leg-
endre’s complete elliptic integral of the first kind, and R′(t) is the complementary integral
of R(t) (see [5, 6]). Let Ppk denote the class of all functions p(z) that are analytic in E with
p(0) = 1 and p(z) ≺ pk(z) for z ∈ E. Clearly, we can see that Ppk ⊂ P , where P is the class
of functions with positive real parts (see [1]). More precisely,

Ppk ⊂P
(

k
1 + k

)
⊂P .

For more detail regarding conic domains and related classes, see [4–6, 8–11].
Recently, Noor [12] defined the classes k – ST s, k – UCV s, and k – UKs of k-uniformly

starlike, convex, and close to convex functions with respect to symmetrical points and
studied various interesting properties for these classes.

We consider the following one-parameter families of integral operators:

Iα
β f (z) =

(β + 1)α

Γ (α)zβ

∫ z

0
tβ–1

(
log

z
t

)α–1

f (t) dt, (1.4)

L
α
β f (z) =

(
α + β

β

)
α

zβ

∫ z

0
tβ–1

(
1 –

t
z

)α–1

f (t) dt, (1.5)

and

Jβ f (z) =
β + 1

zβ

∫ z

0
tβ–1f (t) dt, (1.6)
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where α ≥ 0, β > –1, and Γ is the familiar gamma function. We note that Jβ : A → A
defined by (1.6) is the generalized Bernardi operator introduced in [13] for β = 1, 2, 3, . . . ,
and for any real number β > –1, this operator was studied by Owa and Srivastava [14, 15].
For the operators Lα

β and Iα
β , we refer to [16, 17]. Also, for α = 1, we see that

Jβ f (z) = L
1
β f (z) = I1

β f (z).

We can represent these operators as follows:

Iα
β f (z) = z +

∞∑

n=2

(
β + 1
β + n

)α

anzn

=

(
z +

∞∑

n=2

(
β + 1
β + n

)α

zn

)
∗ f (z), (1.7)

L
α
β f (z) = z +

∞∑

n=2

Γ (β + n)Γ (α + β + 1)
Γ (α + β + n)Γ (β + 1)

anzn

=
(

α + β

β

)
z2F1(1,β ;α + β ; z) ∗ f (z), (1.8)

and

Jβ f (z) = z +
∞∑

n=2

(
β + 1
β + n

)
anzn, (1.9)

where 2F1 denotes the Gaussian hypergeometric function, and the symbol ∗ stands for the
convolution (Hadamard product).

By (1.7) and (1.8) we can easily derive the identities

z
(
Iα

β f (z)
)′ = (β + 1)Iα–1

β f (z) – βIα
β f (z) (1.10)

and

z
(
L

α
β f (z)

)′ = (α + β)Lα–1
β f (z) – (α + β – 1)Lα

β f (z), (1.11)

where α ≥ 1 and β > –1. From (1.10) we have

[
1

1 + β
p(z) +

β

1 + β

]
=
Iα–1

β f (z)
Iα

β f (z)

with

p(z) =
z(Iα

β f (z))′

Iα
β f (z)

.

With the help of these integral operators, we now define the following classes.

Definition 1.1 Let f (z) ∈A. Then f (z) ∈ k –ST s(α,β), α ≥ 0, β > –1, if Iα
β f (z) ∈ k –ST s

in A.
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Definition 1.2 Let f (z) ∈A. Then f (z) ∈ k –ST ∗
s (α,β), α ≥ 0, β > –1, if Lα

β f (z) ∈ k –ST s

in A.

Definition 1.3 Let f (z) ∈A. Then f (z) ∈ k –UKs(α,β), α ≥ 0, β > –1, if Iα
β f (z) ∈ k –UKs

in A.

Definition 1.4 Let f (z) ∈A. Then f (z) ∈ k –UK∗
s (α,β), α ≥ 0, β > –1, if Lα

β f (z) ∈ k –UKs

in A.

2 A set of lemmas
In this section, we give the following lemmas, which will be used in our investigation.

Lemma 2.1 ([4]) Let k ≥ 0, and let β1,γ ∈ C be such that β1 �= 0 and Re{ β1k
k+1 + γ } > 0.

Suppose that p(z) is analytic in A with p(0) = 1 and satisfies

(
p(z) +

zp′(z)
β1p(z) + γ

)
≺ pk(z) (2.1)

and that q(z) is an analytic function satisfying

q(z) +
zq′(z)

β1q(z) + γ
= pk(z). (2.2)

Then q(z) is univalent, p(z) ≺ q(z) ≺ pk(z), and q(z) is the best dominant of (2.1) given as

q(z) =
[
β1

∫ 1

0

(
tβ1+γ –1 exp

∫ tz

z

pk(u) – 1
u

du
)

dt
]–1

–
γ

β1
. (2.3)

Lemma 2.2 ([18]) Let λ,ρ ∈ C be such that λ �= 0, and let φ(z) ∈A be convex and univalent
in U with Re{λφ(z) + ρ} > 0 (z ∈U). Also, let q(z) ∈A and q(z) ≺ φ(z). If p(z) is analytic in
U with p(0) = 1 and satisfies

(
p(z) +

zp′(z)
λq(z) + ρ

)
≺ φ(z), (2.4)

then p(z) ≺ φ(z).

3 The main results and their consequences
Our first main result is stated as the following:

Theorem 3.1 Let f (z) ∈ k – ST s(α,β). Then the odd function

ψ(z) =
1
2
[
f (z) – f (–z)

] ∈ k – ST (α,β).

Proof Note that

Iα
β ψ(z) =

1
2
[
Iα

β f (z) – Iα
β f (–z)

]
.
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We want to show that Iα
β ψ(z) ∈ k – ST . Now, for f (z) ∈ k – ST s(α,β), this implies that

Iα
β f (z) ∈ k – ST s. Then, for z ∈A,

z(Iα
β ψ(z))′

Iα
β ψ(z)

=
1
2

[ 2z(Iα
β f (z))′

Iα
β f (z) – Iα

β f (–z)
+

2(–z)(Iα
β f (–z))′

Iα
β f (–z) – Iα

β f (z)

]

=
1
2
[
h1(z) + h2(z)

]

= h(z).

and hi(z) ≺ pk(z), i = 1, 2. This implies that h(z) ≺ pk(z) in A, and therefore Iα
β ψ(z) ∈ k –

ST . Consequently, ψ(z) ∈ k – ST (α,β) in A. �

Similarly, we can prove that if f (z) ∈ k – ST ∗
s (α,β), then

φ(z) =
1
2
[
f (z) – f (–z)

] ∈ k – ST ∗(α,β).

Taking α = 0, we obtain the following result proved by Noor [12].

Corollary 3.2 Let f (z) ∈ k – ST s. Then the odd function

ψ(z) =
1
2
[
f (z) – f (–z)

] ∈ k – ST .

Note that, for k = α = 0, the function ψ(z) = 1
2 [f (z) – f (–z)] is a starlike function in A;

see [2].

Theorem 3.3 Let α ≥ 2 and β > –1. Then k – ST (α – 1,β) ⊂ k – ST (α,β).

Proof Let f (z) ∈ k – ST (α – 1,β) and set

p(z) =
z(Iα

β f (z))′

Iα
β f (z)

. (3.1)

Note that p(z) is analytic in A with p(0) = 1.
From (3.1) and identity (1.10) we have

Iα–1
β f (z)
Iα

β f (z)
= (1 – γ )p(z) + γ (3.2)

with

γ =
β

β + 1
. (3.3)

Logarithmic differentiation of (3.2) yields

z(Iα–1
β f (z))′

Iα–1
β f (z)

=
{

p(z) +
(1 – γ )zp′(z)

(1 – γ )zp(z) + γ

}
,
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and thus it follows that

(
p(z) +

zp′(z)
zp(z) + β

)
≺ pk(z).

Using Lemma 2.1, we have

p(z) ≺ q(z) ≺ pk(z)

with

q(z) =
[∫ 1

0

(
tβ exp

∫ tz

z

pk(u) – 1
u

du
)

dt
]–1

– β .

This proves that f (z) ∈ k – ST (α,β) in A, and the proof is complete. �

Theorem 3.4 Let α ≥ 2 and β > –1. Then k – ST ∗(α – 1,β) ⊂ k – ST ∗(α,β).

Proof Let

z(Lα
β f (z))′

Lα
β f (z)

= h(z), (3.4)

where h(z) is analytic in A with h(0) = 1.
From (3.4) and identity (1.11) we get

1
α + β

z(Lα
β f (z))′

Lα
β f (z)

+
(

1 –
1

α + β

)
=
Lα–1

β f (z)
Lα

β f (z)
. (3.5)

Logarithmic differentiation of (3.5), together with (3.4), gives us

z(Lα–1
β f (z))′

Lα–1
β f (z)

= h(z) +
1

α+β
zh′(z)

1
α+β

h(z) + α+β–1
α+β

= h(z) +
zh′(z)

h(z) + α + β – 1
.

Since f (z) ∈ k – ST ∗(α – 1,β), it follows that

h(z) +
zh′(z)

h(z) + α + β – 1
≺ pk(z).

Applying Lemma 2.1, we have

h(z) ≺ pk(z).

This proves our result. �

Theorem 3.5 Let α ≥ 2 and β > –1. Then k – ST s(α – 1,β) ⊂ k – ST s(α,β).
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Proof Let f (z) ∈ k – ST s(α – 1,β). Then, using Theorems 3.1 and 3.3, we have

ψ(z) =
f (z) – f (–z)

2
∈ k – ST (α – 1,β) ⊂ k – ST (α,β).

From this it easily follows that f (z) ∈ k – ST s(α,β), and this completes the proof. �

A similar result for the class k – ST ∗
s (α,β) can be easily proved.

Theorem 3.6 Let α ≥ 1 and β > 0. Then k – UKs(α – 1,β) ⊂ k – UKs(α,β).

Proof Let f (z) ∈ k – UKs(α – 1,β). Then there exists g(z) ∈ k – ST s(α – 1,β) such that

2z(Iα–1
β f (z))′

Iα–1
β g(z) – Iα–1

β g(–z)
=

z(Iα–1
β f (z))′

Iα–1
β ψ(z)

∈ P,

where ψ(z) =
Iα–1

β g(z)–Iα–1
β g(–z)

2 ∈ k – ST (α – 1,β) ⊂ k – ST (α,β) in A.
Let us set

z(Iα
β f (z))′

Iα
β ψ(z)

= p(z), (3.6)

where p(z) is analytic in A with p(0) = 1. Then by (3.6) and identity (1.10) we get

Iα–1
β ψ(z)
Iα

β ψ(z)
= (1 – γ )p0(z) + γ ,

where p0(z) =
z(Iα

β ψ(z))′
Iα

β ψ(z) , and γ is given by (3.3). Now by simple computations we obtain

z(Iα–1
β f (z))′

zIα–1
β ψ(z)

=
z(Iα–1

β f (z))′

Iα
β ψ(z)[(1 – γ )p0(z) + γ ]

=
z[(z(Iα

β f (z))′)′] + βz(Iα
β f (z))′

(β + 1)Iα
β ψ(z)[(1 – γ )p0(z) + γ ]

=
βp(z) + p(z)p0(z) + zp′(z)

(β + 1)[(1 – β

1+β
)p0(z) + β

1+β
]

=
βp(z) + p(z)p0(z) + zp′(z)

p0(z) + β

= p(z) +
zp′(z)

p0(z) + β
.

Since f (z) ∈ k – UKs(α – 1,β), it follows that

p(z) +
zp′(z)

p0(z) + β
∈P in A.

Applying Lemma.2.2, we have p(z) ∈P in A. This proves f (z) ∈ k – UKs(α,β) in A. �

By a similar argument we can easily prove the following inclusion result.
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Theorem 3.7 Let α ≥ 1 and β > 0. Then k – UK∗(α – 1,β) ⊂ k – UK∗(α,β).

Theorem 3.8 Let f (z) ∈ k – ST s(α,β) in A. Then

Re

{z(Iα–1
β f (z))′

Iα–1
β ϕ(z)

}
> 0

for |z| < R(β ,γ0), where

R(β ,γ0) =
(1 + β)

(2 – γ0) +
√

(2 – γ0)2 + (1 + β)(β + 2γ0 – 1)

with

γ0 =
k

k + 1
. (3.7)

Proof Let f (z) ∈ k – ST s(α,β). Then

ϕ(z) =
f (z) – f (–z)

2
∈ k – ST (α,β),

and hence

z(Iα
β f (z))′

Iα
β ϕ(z)

∈P(pk) ⊂P(γ0),

where γ0 is given by (3.7). Let

z(Iα
β f (z))′

Iα
β ϕ(z)

= h(z), h(z) ∈P(γ0),

= (1 – γ0)h0(z) + γ0, h0(z) ∈P . (3.8)

Then, proceeding as in Theorem 3.5, we have

z(Iα–1
β f (z))′

Iα–1
β ϕ(z)

= h(z) +
zh′(z)

p(z) + β
, (3.9)

where p(z) =
z(Iα

β ϕ(z))′
Iα

β ϕ(z) ∈P(γ ). Using (3.8) and p(z) = (1 – γ0)p0(z) + γ0 in (3.9), we have

z(Iα–1
β f (z))′

Iα–1
β ϕ(z)

= (1 – γ0)h0(z) + γ0 +
(1 – γ0)zh′

0(z)
(1 – γ0)p0(z) + γ0 + β

with h0(z) ∈P , p0(z) ∈P , that is,

1
1 – γ0

[z(Iα–1
β f (z))′

Iα–1
β ϕ(z)

– γ0

]
= h0(z) +

zh′
0(z)

(1 – γ0)p0(z) + γ0 + β
.
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Using the distortion result for the class P , we obtain

Re

[
1

1 – γ0

{z(Iα–1
β f (z))′

Iα–1
β ϕ(z)

– γ0

}]

≥ Reh0(z)
{

1 –
2r

1–r2

(1 – γ0) 1–r
1+r + (γ0 + β)

}

= Reh0(z)
{

1 –
2r

(1 – γ0)(1 + r)2 + (1 – r2)(γ0 + β)

}
. (3.10)

Right-hand side of (3.10) is greater than or equal to zero for |z| < R(β ,γ0), where R(β ,γ0)
is the least positive root of the equation

T(r) := (1 – β – 2γ0)r2 – 2(2 – γ0)r + (1 + β) = 0,

that is,

R(β ,γ0) =
2(2 – γ0) –

√
4(2 – γ0)2 + 4(1 + β)(β + 2γ0 – 1)

2(1 – β – 2γ0)

=
(1 + β)

(2 – γ0) +
√

(2 – γ0)2 + (1 + β)(β + 2γ0 – 1)
.

The proof is completed. �

Particular Cases
(i) For β = 0 and γ0 = k

k+1 = 0 (i.e., k = 0), we have f (z) ∈ S∗
s (α, 0) (ψ ∈ S∗(α, 0)) and

R(0, 0) =
1

2 +
√

3
.

(ii) For k = 1 and β = 0,

R
(

0,
1
2

)
=

1
3

.

(iii) For k = 1 and β = 1,

R
(

1,
1
2

)
=

4
4 +

√
17

.

Theorem 3.9 Let Lα
β f (z) ∈ k – ST . Then

L
α–1
β f (z) ∈ S∗(γ0), γ0 =

k
k + 1

for |z| < R1, where

R1(α,β ,γ0) =
α + β

2 – γ0 +
√

(2 – γ0)2 + (α + β)(2γ0 + α + β – 2)
.
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Proof Since Lα
β f (z) ∈ k – ST , we have

z(Lα
β f (z))′

Lα
β f (z)

= h(z), h(z) ≺ pk(z)

in A. With a similar argument as in Theorem 3.5, we have

z(Lα–1
β f (z))′

Lα–1
β f (z)

= h(z) +
zh′(z)

h(z) + α + β – 1
,

that is,

Re

[
1

1 – γ0

{z(Lα–1
β f (z))′

Lα–1
β f (z)

– γ0

}]

= Re

[
h0(z) +

zh′
0(z)

(1 – γ0)h0(z) + (γ0 + α + β – 1)

]

≥ Reh0(z)
[

1 –
2r

1–r2

(1 – γ0) 1–r
1+r + (γ0 + α + β – 1)

]
, (3.11)

where

h(z) = (1 – γ0)h0(z) + γ0, h0 ∈P ,γ0 =
k

k + 1
.

The right-hand side of (3.11) is greater than or equal to zero for |z| < R1, where R1 is the
least positive root of the equation

T(r) := (2 – 2γ0 – α – β)r2 – 2(2 – γ0)r + α + β = 0,

that is,

R1(α,β ,γ0) =
2 – γ0 –

√
(2 – γ0)2 + (α + β)(2γ0 + α + β – 2)

2(2 – α – β – 2γ0)

=
α + β

2 – γ0 +
√

(2 – γ0)2 + (α + β)(2γ0 + α + β – 2)
.

This completes the proof. �

4 Conclusion
In this paper, we have defined some new classes of analytic functions involving integral op-
erators. We have shown that these classes generalize the well-known classes, and already
existing results can be obtained as a particular cases of our results. Inclusion relations of
these classes are also a significant part of our work. We believe that the work presented in
this paper will give researchers a new direction and will motivate them to explore more
interesting facts on similar lines.
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