1 Introduction

Existence of a fixed point for contraction type mappings in partially ordered metric spaces with possible applications have been considered recently by many authors (e.g. [131]). Recently many researchers have obtained fixed and common fixed point results on partially ordered metric spaces (see [5, 10, 11, 18, 22, 32, 33]). In 2006, Bhaskar and Lakshmikantham [13] initiated the idea of coupled fixed point and proved some interesting coupled fixed point theorems for mappings satisfying a mixed monotone property. In this continuation, Lakshmikantham and Ćirić [17] generalized these results for nonlinear ϕ-contraction mappings by introducing two ideas namely: coupled coincidence point and mixed g-monotone property. Thereafter Samet and Vetro [34] extended the idea of coupled fixed point to higher dimensions by introducing the notion of fixed point of n-order (or n-tupled fixed point, where n is natural number greater than or equal to 2) and presented some n-tupled fixed point results in complete metric spaces, using a new concept of F-invariant set. On the other hand, Imdad et al. [35] generalized the idea of n-tupled fixed point by considering even-tupled coincidence point besides exploiting the idea of mixed g-monotone property on X n and proved an even-tupled coincidence point theorem for nonlinear ϕ-contraction mappings satisfying mixed g-monotone property.

The concept of partial metric space was introduced by Matthews [36] in 1994, which is a generalization of usual metric space. In such spaces, the distance of a point to itself may not be zero. The main motivation behind the idea of a partial metric space is to transfer mathematical techniques into computer science. Following this initial work, Matthews [36] generalized the Banach contraction principle in the context of complete partial metric spaces. For more details, we refer the reader to [4, 79, 20, 2426, 3748].

Samet [27] introduced the concept of generalized Meir-Keeler type contraction function and proved some coupled fixed point theorems in partially ordered metric spaces. In different years, many researchers studied and worked on this contraction condition. Recently, in [12], Berinde and Pǎcurar gave the concept of symmetric Meir-Keeler type condition and generalized several results in the literature. Very recently, Erduran and Imdad [49] generalized the coupled fixed point theorems in the context of partial metric spaces. In this paper, we established some n-tupled fixed point theorems for generalized Meir-Keeler type contraction condition in ordered partial metric spaces enjoying strict mixed monotone property. In this paper, we prove the existence and uniqueness of some Meir-Keeler type n-tupled fixed point theorems in the context of partially ordered partial metric spaces. The presented theorems extend and improve the recent coupled fixed point theorems due to Erduran and Imdad [49].

2 Preliminaries

In this section, we collect some definitions and properties of partial metric space which are relevant to our presentation.

Definition 2.1 A partial metric on a nonempty set X is a function p:X×X R + such that for all x,y,zX,

(p1) x=yp(x,x)=p(x,y)=p(y,y),

(p2) p(x,x)p(x,y),

(p3) p(x,y)=p(y,x),

(p4) p(x,y)p(x,z)+p(z,y)p(z,z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X.

Remark 2.1 It is clear that if p(x,y)=0, then from (p1), (p2) and (p3), x=y. But if x=y, p(x,y) may not be zero.

Each partial metric p on X generates a T 0 topology τ p on X which has as a base the family of open p-balls { B p (x,ϵ),xX,ϵ>0}, where B p (x,ϵ)={yX:p(x,y)<p(x,x)+ϵ} for all xX and ϵ>0.

If p is a partial metric on X, then the function p s :X×X R + given by

p s (x,y)=2p(x,y)p(x,x)p(y,y)

is a metric on X.

Example 2.1 [36, 37, 43]

Consider X= R + with p(x,y)=max{x,y}. Then ( R + ,p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case p s (x,y)=|xy|.

Example 2.2 [50]

Let X={[a,b]:a,bR,ab} and define p([a,b],[c,d])=max{b,d}min{a,c}. Then (X,p) is a partial metric space.

Example 2.3 [50]

Let X=[0,1][2,3] and define p:X×X[0,) by

p(x,y)= { max { x , y } , { x , y } [ 2 , 3 ] ; | x y | , { x , y } [ 0 , 1 ] .

Then (X,p) is a complete partial metric space.

Example 2.4 [51]

Let (X,d) and (X,p) be metric space and partial metric space, respectively. Then the mappings ρ i :X×X R + (i{1,2,3}) defined by

ρ 1 ( x , y ) = d ( x , y ) + p ( x , y ) , ρ 2 ( x , y ) = d ( x , y ) + max { ω ( x ) , ω ( y ) } , ρ 3 ( x , y ) = d ( x , y ) + a

induce partial metrics on X, where ω:X R + is an arbitrary function and a0.

Definition 2.2 Let (X,p) be a partial metric space and { x n } be a sequence in X. Then

  1. (i)

    { x n } converges to a point xX if and only if p(x,x)= lim n + p(x, x n ),

  2. (ii)

    { x n } is said to be a Cauchy sequence if lim n , m + p( x n , x m ) exists (and is finite).

Definition 2.3 A partial metric space (X,p) is said to be complete if every Cauchy sequence { x n }X converges with respect to τ p , to a point xX, such that p(x,x)= lim n , m + p( x n , x m ).

Lemma 2.1 Let (X,p) be a partial metric space. Then

  1. (i)

    { x n } is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X, p s ),

  2. (ii)

    (X,p) is complete if and only if the metric space (X, p s ) is complete. Furthermore, lim n + p s ( x n ,x)=0 if and only if

    p(x,x)= lim n + p( x n ,x)= lim n , m + p( x n , x m ).

In [52], Meir-Keeler generalized the well-known Banach fixed point theorem by proving the following interesting fixed point theorem.

Theorem 2.1 [52]

Let (X,d) be a complete metric space and T:XX be a mapping. Suppose that for every ϵ>0 there exists δ(ϵ)>0 such that for all

x,yXwith ϵd(x,y)<ϵ+δ(ϵ)d(Tx,Ty)<ϵ.
(2.1)

Then T has a unique fixed point zX and for all xX, the sequence { T n x} converges to z.

In recent years, many authors generalized Meir-Keeler fixed point theorems in various ways in various spaces which include complete metric space as well as ordered metric space. In [27], Samet introduced the concept of generalized Meir-Keeler type contraction function and proved some coupled fixed point results. Samet [27] introduced the definition below to modify the Meir-Keeler contraction and extended its applications.

Definition 2.4 [27]

Let (X,d) be a partially ordered metric space and F:X×XX be a given mapping. Then F is a generalized Meir-Keeler type function if for all ϵ>0 there exists δ(ϵ)>0 such that

ux,yv,ϵ 1 2 [ d ( x , u ) + d ( y , v ) ] <ϵ+δ(ϵ)d ( F ( x , y ) , F ( u , v ) ) <ϵ.
(2.2)

Very recently Erduran and Imdad [49] generalized the results of Samet [27] for ordered partial metric spaces. For more details, see [12, 27, 53, 54].

Erduran and Imdad [49] proved the following result:

Theorem 2.2 [49]

Let (X,) be a partially ordered set and suppose there is a partial metric p on X such that (X,p) is complete partial metric space. Let F:X×XX be mapping satisfying the following hypotheses:

  1. (1)

    F has the mixed strict monotone property,

  2. (2)

    F is a generalized Meir-Keeler type function,

  3. (3)

    F is continuous or X has the following properties:

  4. (a)

    if a nondecreasing sequence { x n }x, then x n x for all n,

  5. (b)

    if a nonincreasing sequence { x n }x, then x x n for all n.

If there exist x 0 , y 0 X such that x 0 F( x 0 , y 0 ) and F( y 0 , x 0 ) y 0 , then there exists (x,y)X×X such that x=F(x,y) and y=F(y,x). Furthermore, p(x,x)=p(y,y)=0.

Note Throughout the paper we consider n to be an even integer.

Let (X,p) be a partial metric. We endow X×X××X, n times (= X n ) with the partial metric η defined for ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n by

η ( ( x 1 , x 2 , , x n ) , ( y 1 , y 2 , , y n ) ) =max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } .

Let F: X n X be a given mapping. Then for all ( x 1 , x 2 ,, x n ) X n and for all mN, m2, we denote

F m ( x 1 , x 2 , , x n ) = F ( F m 1 ( x 1 , x 2 , , x n ) , F m 1 ( x 2 , , x n , x 1 ) , , F m 1 ( x n , x 1 , , x n 1 ) ) .

In this paper, we used the concept of n-tupled fixed point given by Samet and Vetro [34]. We recall some basic concepts.

Definition 2.5 [35]

Let (X,) be a partially ordered set and F: X n X be a mapping. The mapping F is said to have the mixed monotone property if F is nondecreasing in its odd position arguments and nonincreasing in its even position arguments, that is, if,

( i ) for all  x 1 1 , x 2 1 X , x 1 1 x 2 1 F ( x 1 1 , x 2 , x 3 , , x n ) F ( x 2 1 , x 2 , x 3 , , x n ) , ( ii ) for all  x 1 2 , x 2 2 X , x 1 2 x 2 2 F ( x 1 , x 2 2 , x 3 , , x n ) F ( x 1 , x 1 2 , x 3 , , x n ) , ( iii ) for all  x 1 3 , x 2 3 X , x 1 3 x 2 3 F ( x 1 , x 2 , x 1 3 , , x n ) F ( x 1 , x 2 , x 2 3 , , x n ) , ( iii ) ( iii ) for all  x 1 n , x 2 n X , x 1 n x 2 n F ( x 1 , x 2 , x 3 , , x 2 n ) F ( x 1 , x 2 , x 3 , , x 1 n ) .

Definition 2.6 [34]

An element ( x 1 , x 2 ,, x n ) X n is called an n-tupled fixed point of the mapping F: X n X if

{ F ( x 1 , x 2 , x 3 , , x n ) = x 1 , F ( x 2 , x 3 , , x n , x 1 ) = x 2 , F ( x 3 , , x n , x 1 , x 2 ) = x 3 , F ( x n , x 1 , x 2 , , x n 1 ) = x n .

Example 2.5 Let (R,d) be a partially ordered metric space under natural setting and let F: R n R be a mapping defined by F( x 1 , x 2 , x 3 ,, x n )=sin( x 1 x 2 x 3 x n ), for any x 1 , x 2 ,, x n R. Then (0,0,,0) is an n-tupled fixed point of F.

Remark 2.2 Definition 2.6 with n=2,4 respectively yields the definition of coupled fixed point [13] and quadrupled fixed point [55].

3 Main results

We begin this section by defining the following definitions:

Definition 3.1 Let (X,) be a partially ordered set and F: X n X be a mapping. The mapping F is said to have the mixed strict monotone property if F is nondecreasing in its odd position arguments and nonincreasing in its even position arguments, that is, if,

( i ) for all  x 1 1 , x 2 1 X , x 1 1 x 2 1 F ( x 1 1 , x 2 , x 3 , , x n ) F ( x 2 1 , x 2 , x 3 , , x n ) , ( ii ) for all  x 1 2 , x 2 2 X , x 1 2 x 2 2 F ( x 1 , x 2 2 , x 3 , , x n ) F ( x 1 , x 1 2 , x 3 , , x n ) , ( iii ) for all  x 1 3 , x 2 3 X , x 1 3 x 2 3 F ( x 1 , x 2 , x 1 3 , , x n ) F ( x 1 , x 2 , x 2 3 , , x n ) , ( iii ) ( iii ) for all  x 1 n , x 2 n X , x 1 n x 2 n F ( x 1 , x 2 , x 3 , , x 2 n ) F ( x 1 , x 2 , x 3 , , x 1 n ) .

Definition 3.2 Let (X,p) be a partially ordered partial metric space and F: X n X be a given mapping. We say that F is a generalized Meir-Keeler type function if for all ϵ>0 there exists δ(ϵ)>0 such that for ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n with x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n

{ ϵ max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , p ( x 3 , y 3 ) , , p ( x n , y n ) } < ϵ + δ ( ϵ ) p ( F ( x 1 , x 2 , x 3 , , x n ) , F ( y 1 , y 2 , y 3 , , y n ) ) < ϵ .
(3.1)

The aim of this work is to prove the following results:

Lemma 3.1 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping. If F is a generalized Meir-Keeler type function, then for ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n

p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) <max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) }

with x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n or x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n .

Proof Let x 1 , x 2 ,, x n , y 1 , y 2 ,, y n X such that

x 1 y 1 , y 2 x 2 , x 3 y 3 , , y n x n or x 1 y 1 , y 2 x 2 , x 3 y 3 , , y n x n .
(3.2)

Then max{p( x 1 , y 1 ),p( x 2 , y 2 ),p( x 3 , y 3 ),,p( x n , y n )}>0. Since F is a generalized Meir-Keeler type function. Therefore for ϵ=max{p( x 1 , y 1 ),p( x 2 , y 2 ),,p( x n , y n )}, there exists δ(ϵ)>0 such that

x 1 y 1 , y 2 x 2 , x 3 y 3 , , y n x n , ϵ max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , p ( x 3 , y 3 ) , , p ( x n , y n ) } < ϵ + δ ( ϵ ) p ( F ( x 1 , x 2 , x 3 , , x n ) , F ( y 1 , y 2 , y 3 , , y n ) ) < ϵ .

Putting x 1 = x 1 , x 2 = x 2 ,, x n = x n and y 1 = y 1 , y 2 = y 2 ,, y n = y n , we obtain the desired result. □

Lemma 3.2 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping. Assume that the following hypotheses hold:

  1. (1)

    F has the mixed strict monotone property,

  2. (2)

    F is a generalized Meir-Keeler type function,

  3. (3)

    there exist ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n with x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n .

Then

η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) 0 as  m .

Proof We claim that:

{ F m ( x 1 , x 2 , x 3 , , x n ) F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) F m ( x 2 , x 3 , , x n , x 1 ) , F m ( y n , y 1 , y 2 , , y n 1 ) F m ( x n , x 1 , x 2 , , x n 1 ) ,
(3.3)

with the notation F 1 F. Then by the mixed strict monotone property of F,

{ x 1 y 1 F ( x 1 , x 2 , x 3 , , x n ) F ( y 1 , x 2 , x 3 , , x n ) , y 2 x 2 F ( y 1 , x 2 , x 3 , , x n ) F ( y 1 , y 2 , x 3 , , x n ) , x 3 y 3 F ( y 1 , y 2 , x 3 , x 4 , , x n ) F ( y 1 , y 2 , y 3 , x 4 , , x n ) , y n x n F ( y 1 , y 2 , , y n 1 , x n ) F ( y 1 , y 2 , , y n 1 , y n ) .

Then we have F( x 1 , x 2 , x 3 ,, x n )F( y 1 , y 2 , y 3 ,, y n ). Also

{ y 2 x 2 F ( y 2 , y 3 , , y n , y 1 ) F ( x 2 , y 3 , , y n , y 1 ) , x 3 y 3 F ( x 2 , y 3 , y 4 , , y n , y 1 ) F ( x 2 , x 3 , y 4 , , y n , y 1 ) , y n x n F ( x 2 , x 3 , , y n , y 1 ) F ( x 2 , x 3 , , x n , y 1 ) , x 1 y 1 F ( x 2 , x 3 , , x n , y 1 ) F ( x 2 , x 3 , , x n , x 1 ) .

Therefore F( y 2 , y 3 ,, y n , y 1 )F( x 2 , x 3 ,, x n , x 1 ).

And similarly

{ y n x n F ( y n , y 1 , y 2 , , y n 1 ) F ( x n , y 1 , y 2 , , y n 1 ) , x 1 y 1 F ( x n , y 1 , y 2 , , y n 1 ) F ( x n , x 1 , y 2 , , y n 1 ) , y 2 x 2 F ( x n , x 1 , y 2 , , y n 1 ) F ( x n , x 1 , x 2 , y 3 , , y n 1 ) , x n 1 y n 1 F ( x n , x 1 , , x n 2 , y n 1 ) F ( x n , x 1 , , x n 2 , x n 1 ) .

Therefore F( y n , y 1 , y 2 ,, y n 1 )F( x n , x 1 , x 2 ,, x n 1 ). Thus (3.3) is satisfied for m=1. For m=2, we use the same strategy. We have

F ( x 1 , x 2 , x 3 , , x n ) F ( y 1 , y 2 , y 3 , , y n ) F ( F ( x 1 , x 2 , x 3 , , x n ) , F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) F ( F ( y 1 , y 2 , y 3 , , y n ) , F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) , F ( y 2 , y 3 , , y n , y 1 ) F ( x 2 , x 3 , , x n , x 1 ) F ( F ( y 1 , y 2 , y 3 , , y n ) , F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) F ( F ( y 1 , y 2 , y 3 , , y n ) , F ( y 2 , y 3 , , y n , y 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) , F ( y n , y 1 , y 2 , , , y n 1 ) F ( x n , y 1 , y 2 , , y n 1 ) F ( F ( y 1 , y 2 , y 3 , , y n ) , F ( y 2 , y 3 , , y n , y 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) F ( F ( y 1 , y 2 , y 3 , , y n ) , F ( y 2 , y 3 , , y n , y 1 ) , , F ( y n , y 1 , y 2 , , y n 1 ) ) .

Thus we get

F 2 ( x 1 , x 2 , x 3 , , x n ) F 2 ( y 1 , y 2 , y 3 , , y n ) .

Now,

F ( y 2 , y 3 , , y n , y 1 ) F ( x 2 , x 3 , , x n , x 1 ) F ( F ( y 2 , y 3 , , y n , y 1 ) , , F ( y n , y 1 , y 2 , , y n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) ) F ( F ( x 2 , x 3 , , x n , x 1 ) , , F ( y n , y 1 , y 2 , , y n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) ) , F ( y n , y 1 , y 2 , , y n 1 ) F ( x n , x 1 , x 2 , , x n 1 ) F ( F ( x 2 , x 3 , , x n , x 1 ) , F ( y n , y 1 , y 2 , , y n 1 ) , , F ( y 1 , y 2 , y 3 , , y n ) ) F ( F ( x 2 , x 3 , , x n , x 1 ) , F ( x n , x 1 , x 2 , , x n 1 ) , , F ( y 1 , y 2 , y 3 , , y n ) ) , F ( x 1 , x 2 , x 3 , , x n ) F ( y 1 , y 2 , y 3 , , y n ) F ( F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) ) F ( F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) , F ( x 1 , x 2 , x 3 , , x n ) ) .

Therefore we get

F 2 ( y 2 , y 3 , , y n , y 1 ) F 2 ( x 2 , x 3 , , x n , x 1 ) .

In the same way,

F ( y n , y 1 , y 2 , , y n 1 ) F ( x n , x 1 , x 2 , , x n 1 ) F ( F ( y n , y 1 , y 2 , , y n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) , , F ( y n 1 , , y 2 , y 1 , y n ) ) F ( F ( x n , x 1 , x 2 , , x n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) , , F ( y n 1 , , y 2 , y 1 , y n ) ) , F ( x 1 , x 2 , x 3 , , x n ) F ( y 1 , y 2 , y 3 , , y n ) F ( F ( x n , x 1 , x 2 , , x n 1 ) , F ( y 1 , y 2 , y 3 , , y n ) , , F ( x n 1 , , x 2 , x 1 , x n ) ) F ( F ( x n , x 1 , x 2 , , x n 1 ) , F ( x 1 , x 2 , x 3 , , x n ) , , F ( x n 1 , , x 2 , x 1 , x n ) ) , F ( y 2 , y 3 , , y n , y 1 ) F ( x 2 , x 3 , , x n , x 1 ) F ( F ( x n , x 1 , , x n 1 ) , F ( x 1 , x 2 , , x n ) , F ( y 2 , , y n , y 1 ) , , F ( x n 1 , , x 1 , x n ) ) F ( F ( x n , x 1 , , x n 1 ) , F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) , , F ( x n 1 , , x 1 , x n ) ) .

Thus we have

F 2 ( y n , y 1 , y 2 , , y n 1 ) F 2 ( x n , x 1 , x 2 , , x n 1 ) .

Thus (3.3) is satisfied for m=2. Repeating the same argument for each m, we see that (3.3) holds. Now using Lemma 3.1 and (3.3), we get

p ( F m + 1 ( x 1 , x 2 , x 3 , , x n ) , F m + 1 ( y 1 , y 2 , y 3 , , y n ) ) = p ( F ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , F ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) < max [ p ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( y 1 , y 2 , y 3 , , y n ) ) , p ( F m ( x 2 , x 3 , , x n , x 1 ) , F m ( y 2 , y 3 , , y n , y 1 ) ) , , p ( F m ( x n , x 1 , x 2 , , x n 1 ) , F m ( y n , y 1 , y 2 , , y n 1 ) ) ] .
(3.4)

Also we have

p ( F m + 1 ( x 2 , x 3 , , x n , x 1 ) , F m + 1 ( y 2 , y 3 , , y n , y 1 ) ) = p ( F ( F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) , F m ( x 1 , x 2 , x 3 , , x n ) ) , F ( F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) , F m ( y 1 , y 2 , y 3 , , y n ) ) ) < max [ p ( F m ( x 2 , x 3 , , x n , x 1 ) , F m ( y 2 , y 3 , , y n , y 1 ) ) , , p ( F m ( x n , x 1 , x 2 , , x n 1 ) , F m ( y n , y 1 , y 2 , , y n 1 ) ) , p ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( y 1 , y 2 , y 3 , , y n ) ) ] .
(3.5)

Similarly we have,

p ( F m + 1 ( x n , x 1 , x 2 , , x n 1 ) , F m + 1 ( y n , y 1 , y 2 , , y n 1 ) ) < max [ p ( F m ( x n , x 1 , x 2 , , x n 1 ) , F m ( y n , y 1 , y 2 , , y n 1 ) ) , p ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( y 1 , y 2 , y 3 , , y n ) ) , , p ( F m ( x n 1 , , x 2 , x 1 , x n ) , F m ( y n 1 , , y 2 , y 1 , y n ) ) ] .
(3.6)

Combining (3.4), (3.5), and (3.6), we get

η ( ( F m + 1 ( x 1 , x 2 , x 3 , , x n ) , F m + 1 ( x 2 , x 3 , , x n , x 1 ) , , F m + 1 ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m + 1 ( y 1 , y 2 , y 3 , , y n ) , F m + 1 ( y 2 , y 3 , , y n , y 1 ) , , F m + 1 ( y n , y 1 , y 2 , , y n 1 ) ) ) < η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) .

This implies that

{ η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) }

is a decreasing convergent sequence. Thus there exists ϵ0 such that

lim m [ η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) ] = ϵ .

Now we show that ϵ=0. Assume that ϵ>0. This implies that there exists m 0 N such that

ϵ < η ( ( F m 0 ( x 1 , x 2 , x 3 , , x n ) , F m 0 ( x 2 , x 3 , , x n , x 1 ) , , F m 0 ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m 0 ( y 1 , y 2 , y 3 , , y n ) , F m 0 ( y 2 , y 3 , , y n , y 1 ) , , F m 0 ( y n , y 1 , y 2 , , y n 1 ) ) ) < ϵ + δ ( ϵ ) .

In this case we have

ϵ max { p ( F m 0 ( x 1 , x 2 , x 3 , , x n ) , F m 0 ( y 1 , y 2 , y 3 , , y n ) ) , p ( F m 0 ( x 2 , x 3 , , x n , x 1 ) , F m 0 ( y 2 , y 3 , , y n , y 1 ) ) , , p ( F m 0 ( x n , x 1 , x 2 , , x n 1 ) , F m 0 ( y n , y 1 , y 2 , , y n 1 ) ) } < ϵ + δ ( ϵ ) .

It follows from (3.3) and hypothesis (2) that

p ( ( F ( F m 0 ( x 1 , x 2 , x 3 , , x n ) , F m 0 ( x 2 , x 3 , , x n , x 1 ) , , F m 0 ( x n , x 1 , x 2 , , x n 1 ) ) ) , ( F ( F m 0 ( y 1 , y 2 , y 3 , , y n ) , F m 0 ( y 2 , y 3 , , y n , y 1 ) , , F m 0 ( y n , y 1 , y 2 , , y n 1 ) ) ) ) < ϵ ,

that is,

p ( F m 0 + 1 ( x 1 , x 2 , x 3 , , x n ) , F m 0 + 1 ( y 1 , y 2 , y 3 , , y n ) ) <ϵ.
(3.7)

On the other hand, we have

ϵ max { p ( F m 0 ( x 2 , x 3 , , x n , x 1 ) , F m 0 ( y 2 , y 3 , , y n , y 1 ) ) , , p ( F m 0 ( x n , x 1 , x 2 , , x n 1 ) , F m 0 ( y n , y 1 , y 2 , , y n 1 ) ) , p ( F m 0 ( x 1 , x 2 , x 3 , , x n ) , F m 0 ( y 1 , y 2 , y 3 , , y n ) ) } < ϵ + δ ( ϵ ) ,

which implies that

p ( F m 0 + 1 ( x 2 , x 3 , , x n , x 1 ) , F m 0 + 1 ( y 2 , y 3 , , y n , y 1 ) ) <ϵ.
(3.8)

Similarly,

p ( F m 0 + 1 ( x n , x 1 , x 2 , , x n 1 ) , F m 0 + 1 ( y n , y 1 , y 2 , , y n 1 ) ) <ϵ.
(3.9)

Combining (3.7), (3.8), and (3.9), we have

η ( ( F m 0 + 1 ( x 1 , x 2 , x 3 , , x n ) , F m 0 + 1 ( x 2 , x 3 , , x n , x 1 ) , , F m 0 + 1 ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m 0 + 1 ( y 1 , y 2 , y 3 , , y n ) , F m 0 + 1 ( y 2 , y 3 , , y n , y 1 ) , , F m 0 + 1 ( y n , y 1 , y 2 , , y n 1 ) ) ) < ϵ ,

which is a contradiction. Therefore, we have necessarily ϵ=0. That is,

η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) = 0 .

 □

Remark 3.1 Lemma 3.2 also holds if we replace condition (3) by ( x 1 , x 2 , x 3 ,, x n ),( y 1 , y 2 , y 3 ,, y n ) X n such that x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n .

Theorem 3.1 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping satisfying the following hypotheses:

  1. (1)

    F is continuous,

  2. (2)

    F has the mixed strict monotone property,

  3. (3)

    F is a generalized Meir-Keeler type function,

  4. (4)

    there exist x 0 1 , x 0 2 , x 0 3 ,, x 0 n X such that

    { x 0 1 F ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) , F ( x 0 2 , x 0 3 , , x 0 n , x 0 1 ) x 0 2 , x 0 3 F ( x 0 3 , , x 0 n , x 0 1 , x 0 2 ) , F ( x 0 n , x 0 1 , x 0 2 , , x 0 n 1 ) x 0 n .
    (3.10)

Then there exist ( x 1 , x 2 , x 3 ,, x n ) X n such that x 1 =F( x 1 , x 2 , x 3 ,, x n ), x 2 =F( x 2 , x 3 ,, x n , x 1 ),, x n =F( x n , x 1 , x 2 ,, x n 1 ).

Proof Let us define sequences { x m 1 },{ x m 2 },,{ x m n } in X by

{ x m 1 = F m ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) , x m 2 = F m ( x 0 2 , x 0 3 , , x 0 n , x 0 1 ) , x m 3 = F m ( x 0 3 , , x 0 n , x 0 1 , x 0 2 ) , x m n = F m ( x 0 n , x 0 1 , x 0 2 , , x 0 n 1 ) , m N .

Since F has mixed monotone property and from (3.3) we have

x 0 1 x 1 1 x 2 1 x m 1 x m + 1 1 x m + 1 2 x m 2 x 2 2 x 1 2 x 0 2 , x 0 3 x 1 3 x 2 3 x m 3 x m + 1 3 x 0 3 x m + 1 n x m n x 2 n x 1 n x 0 n .

Applying Lemma 3.2 by taking x 1 = x 0 1 , x 2 = x 0 2 ,, x n = x 0 n and y 1 = x 1 1 , y 2 = x 1 2 ,, y n = x 1 n , then we get

η ( ( F m ( x 0 1 , x 0 2 , , x 0 n ) , F m ( x 0 2 , , x 0 n , x 0 1 ) , , F m ( x 0 n , x 0 1 , , x 0 n 1 ) ) , ( F m ( x 1 1 , x 1 2 , , x 1 n ) , F m ( x 1 2 , , x 1 n , x 1 1 ) , , F m ( x 1 n , x 1 1 , , x 1 n 1 ) ) ) 0 as  m ,

that is,

η ( ( x m 1 , x m 2 , , x m n ) , ( x m + 1 1 , x m + 1 2 , , x m + 1 n ) ) 0as m.
(3.11)

Denote

η s ( ( x m 1 , x m 2 , , x m n ) , ( x m + 1 1 , x m + 1 2 , , x m + 1 n ) ) = 2 max { p s ( x m 1 , x m + 1 1 ) , p s ( x m 2 , x m + 1 2 ) , , p s ( x m n , x m + 1 n ) } , m N .

From the definition of p s , it is clear that

η s ( ( x m 1 , x m 2 , , x m n ) , ( x m + 1 1 , x m + 1 2 , , x m + 1 n ) ) 2 η ( ( x m 1 , x m 2 , , x m n ) , ( x m + 1 1 , x m + 1 2 , , x m + 1 n ) ) , m N .

Using (3.11), we get

lim m η s ( ( x m 1 , x m 2 , , x m n ) , ( x m + 1 1 , x m + 1 2 , , x m + 1 n ) ) = lim m max { p s ( x m 1 , x m + 1 1 ) , p s ( x m 2 , x m + 1 2 ) , , p s ( x m n , x m + 1 n ) } = 0 .
(3.12)

Let ϵ>0. It follows from (3.12) that there exists kN such that

η s ( ( x k 1 , x k 2 , , x k n ) , ( x k + 1 1 , x k + 1 2 , , x k + 1 n ) ) <δ(ϵ).
(3.13)

Without restriction of generality, we can suppose that δ(ϵ)ϵ. We introduce the set X n defined by

: = { ( x 1 , x 2 , x 3 , , x n ) X n : x k 1 x 1 , x 2 x k 2 , x k 3 x 3 , , x n x k n , η s ( ( x k 1 , x k 2 , x k 3 , , x k n ) , ( x k + 1 1 , x k + 1 2 , x k + 1 3 , , x k + 1 n ) ) < ϵ + δ ( ϵ ) } .

Now we will prove that ( x 1 , x 2 , x 3 ,, x n ),

( F ( x 1 , x 2 , x 3 , , x n ) , F ( x 2 , x 3 , , x n , x 1 ) , , F ( x n , x 1 , x 2 , , x n 1 ) ) .
(3.14)

Let ( x 1 , x 2 , x 3 ,, x n ). We have

η s ( ( x k 1 , x k 2 , , x k n ) , ( F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) , , F ( x n , x 1 , , x n 1 ) ) ) = max { p s ( x k 1 , F ( x 1 , x 2 , , x n ) ) , p s ( x k 2 , F ( x 2 , , x n , x 1 ) ) , , p s ( x k n , F ( x n , x 1 , , x n 1 ) ) } max { p s ( x k 1 , x k + 1 1 ) + p s ( x k + 1 1 , F ( x 1 , x 2 , , x n ) ) , p s ( x k 2 , x k + 1 2 ) + p s ( x k + 1 2 , F ( x 2 , , x n , x 1 ) ) , , p s ( x k n , x k + 1 n ) + p s ( x k + 1 n , F ( x n , x 1 , , x n 1 ) ) } = max { p s ( x k 1 , x k + 1 1 ) + p s ( F ( x k 1 , x k 2 , , x k n ) , F ( x 1 , x 2 , , x n ) ) , p s ( x k 2 , x k + 1 2 ) + p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) , , p s ( x k n , x k + 1 n ) + p s ( F ( x k n , x k 1 , , x k n 1 ) , F ( x n , x 1 , , x n 1 ) ) } max { p s ( x k 1 , x k + 1 1 ) , p s ( x k 2 , x k + 1 2 ) , , p s ( x k n , x k + 1 n ) } + max { p s ( F ( x k 1 , x k 2 , , x k n ) , F ( x 1 , x 2 , , x n ) ) , p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) , , p s ( F ( x k n , x k 1 , , x k n 1 ) , F ( x n , x 1 , , x n 1 ) ) } < δ ( ϵ ) + max { p s ( F ( x k 1 , x k 2 , , x k n ) , F ( x 1 , x 2 , , x n ) ) , p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) , , p s ( F ( x k n , x k 1 , , x k n 1 ) , F ( x n , x 1 , , x n 1 ) ) } ( by (3.13) ) .

We consider the following two cases.

Case I: η s (( x k 1 , x k 2 ,, x k n ),( x 1 , x 2 ,, x n ))ϵ.

By Lemma 3.1, we have

η s ( ( x k 1 , x k 2 , , x k n ) , ( F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) , , F ( x n , x 1 , , x n 1 ) ) ) < δ ( ϵ ) + max { p s ( F ( x k 1 , x k 2 , , x k n ) , F ( x 1 , x 2 , , x n ) ) , p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) , , p s ( F ( x k n , x k 1 , , x k n 1 ) , F ( x n , x 1 , , x n 1 ) ) } < δ ( ϵ ) + max { max [ p s ( x k 1 , x 1 ) , p s ( x k 2 , x 2 ) , , p s ( x k n , x n ) ] , max [ p s ( x k 2 , x 2 ) , , p s ( x k n , x n ) , p s ( x k 1 , x 1 ) ] , , max [ p s ( x k n , x n ) , p s ( x k 1 , x 1 ) , , p s ( x k n 1 , x n 1 ) ] } < δ ( ϵ ) + η s ( ( x k 1 , x k 2 , , x k n ) , ( x 1 , x 2 , , x n ) ) δ ( ϵ ) + ϵ .

Case II: ϵ+ η s (( x k 1 , x k 2 ,, x k n ),( x 1 , x 2 ,, x n ))δ(ϵ)+ϵ.

We have

η s ( ( x k 1 , x k 2 , , x k n ) , ( F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) , , F ( x n , x 1 , , x n 1 ) ) ) < δ ( ϵ ) + max { p s ( F ( x k 1 , x k 2 , , x k n ) , F ( x 1 , x 2 , , x n ) ) , p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) , , p s ( F ( x k n , x k 1 , , x k n 1 ) , F ( x n , x 1 , , x n 1 ) ) } .
(3.15)

In this case, we get

ϵ<max { p s ( x k 1 , x 1 ) , p s ( x k 2 , x 2 ) , , p s ( x k n , x n ) } <ϵ+δ(ϵ).

Since x k 1 x 1 , x 2 x k 2 , x k 3 x 3 ,, x n x k n , by (3) we get

p s ( F ( x 1 , x 2 , , x n ) , F ( x k 1 , x k 2 , , x k n ) ) <ϵ.
(3.16)

Also we have

ϵ<max { p s ( x k 2 , x 2 ) , , p s ( x k n , x n ) , p s ( x k 1 , x 1 ) } <ϵ+δ(ϵ).

By (3), this implies that

p s ( F ( x k 2 , , x k n , x k 1 ) , F ( x 2 , , x n , x 1 ) ) <ϵ.
(3.17)

In the same way we have

p s ( F ( x n , x 1 , , x n 1 ) , F ( x k n , x k 1 , , x k n 1 ) ) <ϵ.
(3.18)

Hence combining (3.15)-(3.18), we obtain

η s ( ( x k 1 , x k 2 , , x k n ) , ( F ( x k 1 , x k 2 , , x k n ) , F ( x k 2 , , x k n , x k 1 ) , , F ( x k n , x k 1 , , x k n 1 ) ) ) <ϵ+δ(ϵ).

On the other hand, using (2), we can check easily that

x k 1 F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) x k 2 , , F ( x n , x 1 , , x n 1 ) x k n .

Hence, we deduce that (3.14) holds. By (3.13), we have ( x k + 1 1 , x k + 1 2 ,, x k + 1 n ). This implies with (3.14) that

( x k + 1 1 , x k + 1 2 , , x k + 1 n ) ( F ( x k + 1 1 , x k + 1 2 , , x k + 1 n ) , F ( x k + 1 2 , , x k + 1 n , x k + 1 1 ) , , F ( x k + 1 n , x k + 1 1 , , x k + 1 n 1 ) ) = ( x k + 2 1 , x k + 2 2 , , x k + 2 n ) ( F ( x k + 2 1 , x k + 2 2 , , x k + 2 n ) , F ( x k + 2 2 , , x k + 2 n , x k + 2 1 ) , , F ( x k + 2 n , x k + 2 1 , , x k + 2 n 1 ) ) = ( x k + 3 1 , x k + 3 2 , , x k + 3 n ) ( x m 1 , x m 2 , , x m n ) .

Thus for all m>k, we have ( x m 1 , x m 2 ,, x m n ). This implies that for all m,l>k, we have

η s ( ( x m 1 , x m 2 , , x m n ) , ( x l 1 , x l 2 , , x l n ) ) = max { p s ( x m 1 , x l 1 ) , p s ( x m 2 , x l 2 ) , , p s ( x m n , x l n ) } max { p s ( x m 1 , x k 1 ) + p s ( x k 1 , x l 1 ) , p s ( x m 2 , x k 2 ) + p s ( x k 2 , x l 2 ) , , p s ( x m n , x k n ) + p s ( x k n , x l n ) } max { p s ( x m 1 , x k 1 ) , p s ( x m 2 , x k 2 ) , , p s ( x m n , x k n ) } + max { p s ( x k 1 , x l 1 ) , p s ( x k 2 , x l 2 ) , , p s ( x k n , x l n ) } = η ( ( x m 1 , x m 2 , , x m n ) , ( x k 1 , x k 2 , , x k n ) ) + η ( ( x k 1 , x k 2 , , x k n ) , ( x m 1 , x m 2 , , x m n ) ) < 2 ( ϵ + δ ( ϵ ) ) < 4 ϵ .

We deduce that {( x m 1 , x m 2 ,, x m n )} is a Cauchy sequence in the metric space ( X n , η s ). Since (X,p) is complete, from Lemma 2.1, (X, p s ) is a complete metric space. Therefore ( X n , η s ) is complete. Hence there exist ( x 1 , x 2 ,, x n ) X n such that

η s ( ( x m 1 , x m 2 , , x m n ) , ( x 1 , x 2 , , x n ) ) 0as m,

which shows that

p s ( F m ( x 0 1 , x 0 2 , , x 0 n ) , x 1 ) 0 as  m , p s ( F m ( x 0 2 , , x 0 n , x 0 1 ) , x 2 ) 0 as  m , p s ( F m ( x 0 n , x 0 1 , , x 0 n 1 ) , x n ) 0 as  m .

Therefore from Lemma 2.1 and using (3.12), we have

{ p ( x 1 , x 1 ) = lim m p ( x m 1 , x 1 ) = lim m p ( x m 1 , x m 1 ) = 0 , p ( x 2 , x 2 ) = lim m p ( x m 2 , x 2 ) = lim m p ( x m 2 , x m 2 ) = 0 , p ( x n , x n ) = lim m p ( x m n , x n ) = lim m p ( x m n , x m n ) = 0 .
(3.19)

We will show that x 1 =F( x 1 , x 2 ,, x n ), x 2 =F( x 2 ,, x n , x 1 ),, x n =F( x n , x 1 ,, x n 1 ). Since F is continuous on X, then F is continuous at ( x 1 , x 2 ,, x n ). Hence for any ϵ>0, there exists δ(ϵ)>0 such that if ( y 1 , y 2 ,, y n ) X n verifying

η ( ( x 1 , x 2 , , x n ) , ( y 1 , y 2 , , y n ) ) <η ( ( x 1 , x 2 , , x n ) , ( x 1 , x 2 , , x n ) ) +δ(ϵ)

means that

max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } < max { p ( x 1 , x 1 ) , p ( x 2 , x 2 ) , , p ( x n , x n ) } + δ ( ϵ ) = δ ( ϵ ) ,

because p( x 1 , x 1 )=p( x 2 , x 2 )==p( x n , x n )=0, then we have

p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) <p ( F ( x 1 , x 2 , , x n ) , F ( x 1 , x 2 , , x n ) ) + ϵ 2 .

Since

lim m p ( x m 1 , x 1 ) = lim m p ( x m 2 , x 2 ) == lim m p ( x m n , x n ) =0

for α=min{ δ ( ϵ ) 2 , ϵ 2 }>0, there exists m 0 , l 0 N such that for m> m 0 , l> l 0 , p( x m 1 , x 1 )<α,p( x m 2 , x 2 )<α,,p( x m n , x n )<α. Then for mN, mmax{ m 0 , l 0 }, we have

max { p ( x m 1 , x 1 ) , p ( x m 2 , x 2 ) , , p ( x m n , x n ) } <α< δ ( ϵ ) 2 ,

so we get

p ( F ( x 1 , x 2 , , x n ) , F ( x m 1 , x m 2 , , x m n ) ) <p ( F ( x 1 , x 2 , , x n ) , F ( x 1 , x 2 , , x n ) ) + ϵ 2 .
(3.20)

Now, for any mmax{ m 0 , l 0 },

p ( F ( x 1 , x 2 , , x n ) , x 1 ) p ( F ( x 1 , x 2 , , x n ) , x m + 1 1 ) + p ( x m + 1 1 , x 1 ) = p ( F ( x 1 , x 2 , , x n ) , F ( x m 1 , x m 2 , , x m n ) ) + p ( x m + 1 1 , x 1 ) < p ( F ( x 1 , x 2 , , x n ) , F ( x 1 , x 2 , , x n ) ) + ϵ 2 + α ( by (3.20) ) < p ( F ( x 1 , x 2 , , x n ) , F ( x 1 , x 2 , , x n ) ) + ϵ .

On the other hand, since F is a generalized Meir-Keeler type function, then from Lemma 3.1, we have

p ( F ( x 1 , x 2 , , x n ) , F ( x 1 , x 2 , , x n ) ) <max { p ( x 1 , x 1 ) , p ( x 2 , x 2 ) , , p ( x n , x n ) } =0.

In this case, for any ϵ>0, p(F( x 1 , x 2 ,, x n ), x 1 )<ϵ. This implies that F( x 1 , x 2 ,, x n )= x 1 . Similarly we can show that

F ( x 2 , , x n , x 1 ) = x 2 ,,F ( x n , x 1 , , x n 1 ) = x n .

Thus we have proved that F has an n-tupled fixed point. □

Remark 3.2 Theorem 3.1 still holds if we replace (3.10) by x 0 1 , x 0 2 , x 0 3 ,, x 0 n X such that

{ x 0 1 F ( x 0 1 , x 0 2 , x 0 3 , , x 0 n ) , F ( x 0 2 , x 0 3 , , x 0 n , x 0 1 ) x 0 2 , x 0 3 F ( x 0 3 , , x 0 n , x 0 1 , x 0 2 ) , F ( x 0 n , x 0 1 , x 0 2 , , x 0 n 1 ) x 0 n .

Theorem 3.2 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Assume that X has the following properties:

  1. (a)

    if a nondecreasing sequence x m x then x m x for all m0,

  2. (b)

    if a nonincreasing sequence x m x then x x m for all m0.

Let F: X n X be a given mapping satisfying the following hypotheses:

  1. (1)

    F is continuous,

  2. (2)

    F has the mixed strict monotone property,

  3. (3)

    F is a generalized Meir-Keeler type function,

  4. (4)

    there exist x 0 1 , x 0 2 , x 0 3 ,, x 0 n X such that (3.10) holds.

Then there exists ( x 1 , x 2 , x 3 ,, x n ) X n such that x 1 =F( x 1 , x 2 , x 3 ,, x n ), x 2 =F( x 2 , x 3 ,, x n , x 1 ),, x n =F( x n , x 1 , x 2 ,, x n 1 ). Furthermore, p( x 1 , x 1 )=p( x 2 , x 2 )==p( x n , x n )=0.

Proof Following the proof of Theorem 3.1, we only have to prove that

x 1 = F ( x 1 , x 2 , x 3 , , x n ) , x 2 = F ( x 2 , x 3 , , x n , x 1 ) , , x n = F ( x n , x 1 , x 2 , , x n 1 ) .

Let ϵ>0. Since F m ( x 0 1 , x 0 2 ,, x 0 n ) x 1 , F m ( x 0 2 ,, x 0 n , x 0 1 ) x 2 ,, F m ( x 0 n , x 0 1 ,, x 0 n 1 ) x n . Then there exist m 1 , m 2 ,, m n N such that for all m m 1 ,l m 2 ,,t m n ,

{ p ( F m ( x 0 1 , x 0 2 , , x 0 n ) , x 1 ) < ϵ , p ( F l ( x 0 2 , , x 0 n , x 0 1 ) , x 2 ) < ϵ , p ( F t ( x 0 n , x 0 1 , , x 0 n 1 ) , x n ) < ϵ .
(3.21)

Taking mmax{ m 1 , m 2 ,, m n } and using

F m ( x 0 1 , x 0 2 , , x 0 n ) x 1 , x 2 F m ( x 0 2 , , x 0 n , x 0 1 ) , , x n F m ( x 0 n , x 0 1 , , x 0 n 1 ) ,

by (3.21) and Lemma 3.1, we get

p ( F ( x 1 , x 2 , , x n ) , x 1 ) p ( F ( x 1 , x 2 , , x n ) , F m + 1 ( x 0 1 , x 0 2 , , x 0 n ) ) + p ( F m + 1 ( x 0 1 , x 0 2 , , x 0 n ) , x 1 ) = p ( F ( x 1 , x 2 , , x n ) , F ( F m ( x 0 1 , x 0 2 , , x 0 n ) , F m ( x 0 2 , , x 0 n , x 0 1 ) , , F m ( x 0 n , x 0 1 , , x 0 n 1 ) ) ) + p ( F m + 1 ( x 0 1 , x 0 2 , , x 0 n ) , x 1 ) < max { p ( x 1 , F m ( x 0 1 , x 0 2 , , x 0 n ) ) , p ( x 2 , F m ( x 0 2 , , x 0 n , x 0 1 ) ) , , p ( x n , F m ( x 0 n , x 0 1 , , x 0 n 1 ) ) } + p ( F m + 1 ( x 0 1 , x 0 2 , , x 0 n ) , x 1 ) < 2 ϵ .

This implies that F( x 1 , x 2 ,, x n )= x 1 . Similarly, we can show that

p ( F ( x 2 , , x n , x 1 ) , x 2 ) <2ϵ,,p ( F ( x n , x 1 , , x n 1 ) , x n ) <2ϵ,

which implies that F( x 2 ,, x n , x 1 )= x 2 ,,F( x n , x 1 ,, x n 1 )= x n .

This completes the proof. □

Now we endow the product space X n with the following partial order: for ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n ,

( y 1 , y 2 , , y n ) ( x 1 , x 2 , , x n ) y 1 x 1 , x 2 y 2 , y 3 x 3 , , x n y n .

One can prove that n-tupled fixed point is in fact unique and the product space X n endow with this partial order has the following property:

  1. (A)

    ( x 1 , x 2 ,, x n ),( z 1 , z 2 ,, z n ) X n , ( t 1 , t 2 ,, t n ) X n that is comparable to ( x 1 , x 2 ,, x n ) and ( z 1 , z 2 ,, z n ).

Theorem 3.3 Adding (A) to the hypotheses of Theorem  3.1 (respectively, Theorem  3.2), we obtain the uniqueness of n-tupled fixed point of F.

Proof Suppose that ( z 1 , z 2 ,, z n ) X n is another n-tupled fixed point of F. We distinguish two cases:

Case I: ( x 1 , x 2 ,, x n ) is comparable to ( z 1 , z 2 ,, z n ) with respect to ordering in X n , where

lim m F m ( x 0 1 , x 0 2 , , x 0 n ) = x 1 , lim m F m ( x 0 2 , , x 0 n , x 0 1 ) = x 2 , , lim m F m ( x 0 n , x 0 1 , , x 0 n 1 ) = x n .

Without restriction of generality, we can suppose that

F ( z 1 , z 2 , , z n ) = z 1 x 1 = F ( x 1 , x 2 , , x n ) , F ( x 2 , , x n , x 1 ) = x 2 z 2 = F ( z 2 , , z n , z 1 ) , F ( x n , x 1 , , x n 1 ) = x n z n = F ( z n , z 1 , , z n 1 ) .

We have

η ( ( x 1 , x 2 , , x n ) , ( z 1 , z 2 , , z n ) ) = max { p ( x 1 , z 1 ) , p ( x 2 , z 2 ) , , p ( x n , z n ) } = max { p ( F ( x 1 , x 2 , , x n ) , F ( z 1 , z 2 , , z n ) ) , p ( F ( x 2 , , x n , x 1 ) , F ( z 2 , , z n , z 1 ) ) , , p ( F ( x n , x 1 , , x n 1 ) , F ( z n , z 1 , , z n 1 ) ) } < max { max [ p ( x 1 , z 1 ) , p ( x 2 , z 2 ) , , p ( x n , z n ) ] , max [ p ( x 1 , z 1 ) , p ( x 2 , z 2 ) , , p ( x n , z n ) ] , , max [ p ( x 1 , z 1 ) , p ( x 2 , z 2 ) , , p ( x n , z n ) ] } = η ( ( x 1 , x 2 , , x n ) , ( z 1 , z 2 , , z n ) ) .

Case II: ( x 1 , x 2 ,, x n ) is not comparable to ( z 1 , z 2 ,, z n ). Then there exists ( t 1 , t 2 ,, t n ) X n that is comparable to ( x 1 , x 2 ,, x n ) and ( z 1 , z 2 ,, z n ). Without restriction of generality, we can assume that

x 1 t 1 , t 2 x 2 , x 3 t 3 , , t n x n and z 1 t 1 , t 2 z 2 , z 3 t 3 , , t n z n .
(3.22)

From (3.22) and Lemma 3.2, we have

η ( ( F m ( x 1 , x 2 , , x n ) , F m ( x 2 , , x n , x 1 ) , , F m ( x n , x 1 , , x n 1 ) ) , ( F m ( t 1 , t 2 , , t n ) , F m ( t 2 , , t n , t 1 ) , , F m ( t n , t 1 , , t n 1 ) ) ) 0 as  m .
(3.23)

Similarly we have

η ( ( F m ( z 1 , z 2 , , z n ) , F m ( z 2 , , z n , z 1 ) , , F m ( z n , z 1 , , z n 1 ) ) , ( F m ( t 1 , t 2 , , t n ) , F m ( t 2 , , t n , t 1 ) , , F m ( t n , t 1 , , t n 1 ) ) ) 0 as  m .
(3.24)

On the other hand, using the triangular inequality, we get

η ( ( x 1 , x 2 , , x n ) , ( z 1 , z 2 , , z n ) ) = η ( ( F m ( x 1 , x 2 , , x n ) , F m ( x 2 , , x n , x 1 ) , , F m ( x n , x 1 , , x n 1 ) ) , ( F m ( z 1 , z 2 , , z n ) , F m ( z 2 , , z n , z 1 ) , , F m ( z n , z 1 , , z n 1 ) ) ) η ( ( F m ( x 1 , x 2 , , x n ) , F m ( x 2 , , x n , x 1 ) , , F m ( x n , x 1 , , x n 1 ) ) , ( F m ( t 1 , t 2 , , t n ) , F m ( t 2 , , t n , t 1 ) , , F m ( t n , t 1 , , t n 1 ) ) ) + η ( ( F m ( t 1 , t 2 , , t n ) , F m ( t 2 , , t n , t 1 ) , , F m ( t n , t 1 , , t n 1 ) ) , ( F m ( z 1 , z 2 , , z n ) , F m ( z 2 , , z n , z 1 ) , , F m ( z n , z 1 , , z n 1 ) ) ) .

By (3.22) and (3.23), we have η(( x 1 , x 2 ,, x n ),( z 1 , z 2 ,, z n ))=0, we get

( x 1 , x 2 , , x n ) = ( z 1 , z 2 , , z n ) .

This completes the proof. □

4 Applications

In this section, using the earlier results proved in the preceding section, we obtain some n-tupled fixed point theorem for mappings satisfying a general contractive condition of integral type in partially ordered complete partial metric spaces.

Theorem 4.1 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping. Assume that there exists a function θ from [0,) into itself satisfying the following:

  1. (1)

    θ(0)=0 and θ(t)>0 for every t>0,

  2. (2)

    θ is nondecreasing and right continuous,

  3. (3)

    for every ϵ>0, there exists δ(ϵ)>0 such that

    ϵ < θ ( max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } ) < ϵ + δ ( ϵ ) θ ( p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) ) < ϵ

for all y 1 x 1 , x 2 y 2 , y 3 x 3 ,, x n y n .

Then F is a generalized Meir-Keeler type function.

Proof Fix ϵ>0. Since θ(ϵ)>0, there exists α>0 and ( a 1 , a 2 ,, a n ),( b 1 , b 2 ,, b n ) X n such that

θ ( ϵ ) θ ( max { p ( a 1 , b 1 ) , p ( a 2 , b 2 ) , , p ( a n , b n ) } ) < θ ( ϵ ) + δ ( ϵ ) θ ( p ( F ( a 1 , a 2 , , a n ) , F ( b 1 , b 2 , , b n ) ) ) < ϵ .
(4.1)

From the right continuity of θ, there exists δ>0 such that θ(ϵ+δ)<θ(ϵ)+α. Fix x 1 , x 2 ,, x n , y 1 , y 2 ,, y n X, then

ϵmax { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } <ϵ+δ.

Since θ is a nondecreasing function, we get

θ(ϵ)θ ( max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } ) <θ(ϵ+δ)<θ(ϵ)+α.

By (4.1) we get

θ ( p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) ) <θ(ϵ),

and hence

p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) <ϵ.

 □

The following result is an immediate consequence of Theorems 3.1, 3.2 and 4.1.

Corollary 4.1 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping satisfying the following hypotheses:

  1. (1)

    F is continuous,

  2. (2)

    F has the mixed strict monotone property,

  3. (3)

    for all ϵ>0, there exists δ(ϵ)>0 such that

    ϵ 0 max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } φ ( t ) d t < ϵ + δ ( ϵ ) 0 p ( F ( x 1 , , x n ) , F ( y 1 , , y n ) ) φ ( t ) d t < ϵ

for all y 1 x 1 , x 2 y 2 , y 3 x 3 ,, x n y n , where φ is a locally integrable function from [0,) into itself satisfying

0 s φ(t)dt>0,s>0,
  1. (4)

    x 0 1 , x 0 2 , x 0 3 ,, x 0 n X such that (3.10) holds.

Then there exists ( x 1 , x 2 ,, x n ) X n such that

x 1 =F ( x 1 , x 2 , , x n ) , x 2 =F ( x 2 , , x n , x 1 ) ,, x n =F ( x n , x 1 , , x n 1 ) .

Moreover, if property (A) is satisfied, then the n-tupled fixed point of F remains unique.

Remark 4.1 The conclusions of the preceding corollary remain valid if we replace the continuity hypothesis of F by hypotheses (a) and (b) of Theorem 3.2.

Corollary 4.2 Let (X,) be a partially ordered set and suppose that there is a partial metric p on X such that (X,p) is a complete partial metric space. Let F: X n X be a given mapping satisfying the following hypotheses:

  1. (1)

    F is continuous,

  2. (2)

    F has the mixed strict monotone property,

  3. (3)

    for all y 1 x 1 , x 2 y 2 , y 3 x 3 ,, x n y n ,

    0 p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) φ(t)dtk 0 max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } φ(t)dt,

where k(0,1) and φ is a locally integrable function from [0,) into itself satisfying

0 s φ(t)dt>0,s>0,
  1. (4)

    x 0 1 , x 0 2 , x 0 3 ,, x 0 n X such that (3.10) holds.

Then there exists ( x 1 , x 2 ,, x n ) X n such that

x 1 =F ( x 1 , x 2 , , x n ) , x 2 =F ( x 2 , , x n , x 1 ) ,, x n =F ( x n , x 1 , , x n 1 ) .

Moreover, if property (A) is satisfied, then the n-tupled fixed point of F remains unique.

Proof For all ϵ>0, take δ(ϵ)=( 1 k 1)ϵ and apply Corollary 4.1. □

Remark 4.2 We replace the continuity hypothesis of F by hypotheses (a) and (b) of Theorem 3.2, then this result also remains true.

5 Example

We give the following example to illustrate our main result.

Example 5.1 Let X=[0,1]. Then (X,) is a partially ordered set under the natural ordering of real numbers. Define p:[0,1]×[0,1] R + by p(x,y)=max{x,y}, x,y[0,1]. Then (X,p) is a complete partial metric space.

Now for any fixed even integer n>1, consider the product space X n =[0,1]×[0,1]××[0,1], n times (in short we write X n = [ 0 , 1 ] n ). Define F: X n X by

F ( x 1 , x 2 , x 3 , , x n ) = x 1 n for  x 1 , x 2 ,, x n [0,1].

Then F has the mixed strict monotone property. Also F is a generalized Meir-Keeler type function. The proof follows in two parts, that is, we prove the following:

For ( x 1 , x 2 ,, x n ),( y 1 , y 2 ,, y n ) X n with x 1 y 1 , y 2 x 2 , x 3 y 3 ,, y n x n ,

( 1 ) p ( F ( x 1 , x 2 , , x n ) , F ( y 1 , y 2 , , y n ) ) < max { p ( x 1 , y 1 ) , p ( x 2 , y 2 ) , , p ( x n , y n ) } , ( 2 ) η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( 2 ) ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) ( 2 ) 0 as  m .

The first part is trivial. For second part, we have

η ( ( F m ( x 1 , x 2 , x 3 , , x n ) , F m ( x 2 , x 3 , , x n , x 1 ) , , F m ( x n , x 1 , x 2 , , x n 1 ) ) , ( F m ( y 1 , y 2 , y 3 , , y n ) , F m ( y 2 , y 3 , , y n , y 1 ) , , F m ( y n , y 1 , y 2 , , y n 1 ) ) ) = η ( ( F ( F m 1 ( x 1 , x 2 , , x n ) , F m 1 ( x 2 , , x n , x 1 ) , , F m 1 ( x n , x 1 , , x n 1 ) ) , F ( F m 1 ( x 2 , , x n , x 1 ) , , F m 1 ( x n , x 1 , , x n 1 ) , F m 1 ( x 1 , x 2 , , x n ) ) , , F ( F m 1 ( x n , x 1 , , x n 1 ) , F m 1 ( x 1 , x 2 , , x n ) , , F m 1 ( x n 1 , , x 1 , x n ) ) ) , ( F ( F m 1 ( y 1 , y 2 , , y n ) , F m 1 ( y 2 , , y n , y 1 ) , , F m 1 ( y n , y 1 , , y n 1 ) ) , F ( F m 1 ( y 2 , , y n , y 1 ) , , F m 1 ( y n , y 1 , , y n 1 ) , F m 1 ( y 1 , y 2 , , y n ) ) , , F ( F m 1 ( y n , y 1 , , y n 1 ) , F m 1 ( y 1 , y 2 , , y n ) , , F m 1 ( y n 1 , , y 1 , y n ) ) ) ) = η ( ( F ( x 1 n m 1 , x 2 n m 1 , x 3 n m 1 , , x n n m 1 ) , F ( x 2 n m 1 , x 3 n m 1 , , x n n m 1 , x 1 n m 1 ) , , F ( x n n m 1 , x 1 n m 1 , x 2 n m 1 , , x n 1 n m 1 ) ) , ( F ( y 1 n m 1 , y 2 n m 1 , y 3 n m 1 , , y n n m 1 ) , F ( y 2 n m 1 , y 3 n m 1 , , y n n m 1 , y 1 n m 1 ) , , F ( y n n m 1 , y 1 n m 1 , y 2 n m 1 , , y n 1 n m 1 ) ) ) = η ( ( x 1 n m , x 2 n m , x 3 n m , , x n n m ) , ( y 1 n m , y 2 n m , y 3 n m , , y n n m ) ) = max { p ( x 1 n m , y 1 n m ) , p ( x 2 n m , y 2 n m ) , p ( x 3 n m , y 3 n m ) , , p ( x n n m , y n n m ) } = max { y 1 n m , x 2 n m , y 3 n m , , x n n m } 0 as  m .

Hence all the hypotheses of Theorem 3.1 are satisfied. Therefore, F has a unique n-tupled fixed point. Here (0,0,,0) is an n-tupled fixed point of F.