1 Introduction

Let a,b,c0 with ab+ac+bc0. Then the symmetric integral R F (a,b,c) [1] of the first kind is defined as

R F (a,b,c)= 1 2 0 [ ( t + a ) ( t + b ) ( t + c ) ] 1 / 2 dt.

The degenerate case of R F , denoted by R C , plays an important role in the theory of special functions [1, 2], which is given by

R C (a,b)= R F (a,b,b).

For a,b>0 with ab, the Schwab-Borchardt mean SB(a,b) [35] of a and b is given by

SB(a,b)={ b 2 a 2 cos 1 ( a / b ) , a < b , a 2 b 2 cosh 1 ( a / b ) , a > b ,

where cos 1 (x) and cosh 1 (x)=log(x+ x 2 1 ) are the inverse cosine and inverse hyperbolic cosine functions, respectively.

Carlson [6] (see also [[7], (3.21)]) proved that

SB(a,b)= [ R C ( a 2 , b 2 ) ] 1 .

Recently, the Schwab-Borchardt mean has been the subject of intensive research. In particular, many remarkable inequalities for the Schwab-Borchardt mean and its generated means can be found in the literature [35, 811].

Let a>b>0, v=(ab)/(a+b)(0,1), p(0,), q(0,π/2), r(0,log(2+ 3 )), and s(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1 v 2 , cosh(r)=sec(s)=1+ v 2 , H(a,b)=2ab/(a+b), G(a,b)= a b , A(a,b)=(a+b)/2, Q(a,b)= ( a 2 + b 2 ) / 2 , and C(a,b)=( a 2 + b 2 )/(a+b) be, respectively, the harmonic, geometric, arithmetic, quadratic, and contraharmonic means of a and b, S A H (a,b)=SB[A(a,b),H(a,b)], S H A (a,b)=SB[H(a,b),A(a,b)], S A C (a,b)=SB[A(a,b),C(a,b)], S C A (a,b)=SB[C(a,b),A(a,b)]. Then Neuman [10] gave the explicit formulas

S A H (a,b)=A(a,b) tanh ( p ) p , S H A (a,b)=A(a,b) sin q q ,
(1.1)
S C A (a,b)=A(a,b) sinh ( r ) r , S A C (a,b)=A(a,b) tan s s .
(1.2)

Very recently, Neuman [12] found a new mean N(a,b) derived from the Schwab-Borchardt mean as follows:

N(a,b)= 1 2 [ a + b 2 SB ( a , b ) ] .
(1.3)

Let N A H (a,b)=N[A(a,b),H(a,b)], N H A (a,b)=N[H(a,b),A(a,b)], N A G (a,b)=N[A(a,b),G(a,b)], N G A (a,b)=N[G(a,b),A(a,b)], N A C (a,b)=N[A(a,b),C(a,b)], N C A (a,b)=N[C(a,b),A(a,b)], N A Q (a,b)=N[A(a,b),Q(a,b)], and N Q A (a,b)=N[Q(a,b),A(a,b)] be the Neuman means. Then Neuman [12] proved that

G(a,b)< N A G (a,b)< N G A (a,b)<A(a,b)< N Q A (a,b)< N A Q (a,b)<Q(a,b)

for all a,b>0 with ab, and the double inequalities

α 1 A ( a , b ) + ( 1 α 1 ) G ( a , b ) < N G A ( a , b ) < β 1 A ( a , b ) + ( 1 β 1 ) G ( a , b ) , α 2 Q ( a , b ) + ( 1 α 2 ) A ( a , b ) < N A Q ( a , b ) < β 2 Q ( a , b ) + ( 1 β 2 ) A ( a , b ) , α 3 A ( a , b ) + ( 1 α 3 ) G ( a , b ) < N A G ( a , b ) < β 3 A ( a , b ) + ( 1 β 3 ) G ( a , b ) , α 4 Q ( a , b ) + ( 1 α 4 ) A ( a , b ) < N Q A ( a , b ) < β 4 Q ( a , b ) + ( 1 β 4 ) A ( a , b )

hold for all a,b>0 with ab if and only if α 1 2/3, β 1 π/4, α 2 2/3, β 2 (π2)/[4( 2 1)]=0.689 , α 3 1/3, β 3 1/2, α 4 1/3, and β 4 [log(1+ 2 )+ 2 2]/[2( 2 1)]=0.356 .

Zhang et al. [13] presented the best possible parameters α 1 , α 2 , β 1 , β 2 [0,1/2] and α 3 , α 4 , β 3 , β 4 [1/2,1] such that the double inequalities

G ( α 1 a + ( 1 α 1 ) b , α 1 b + ( 1 α 1 ) a ) < N A G ( a , b ) < G ( β 1 a + ( 1 β 1 ) b , β 1 b + ( 1 β 1 ) a ) , G ( α 2 a + ( 1 α 2 ) b , α 2 b + ( 1 α 2 ) a ) < N G A ( a , b ) < G ( β 2 a + ( 1 β 2 ) b , β 2 b + ( 1 β 2 ) a ) , Q ( α 3 a + ( 1 α 3 ) b , α 3 b + ( 1 α 3 ) a ) < N Q A ( a , b ) < Q ( β 3 a + ( 1 β 3 ) b , β 3 b + ( 1 β 3 ) a ) , Q ( α 4 a + ( 1 α 4 ) b , α 4 b + ( 1 α 4 ) a ) < N A Q ( a , b ) < Q ( β 4 a + ( 1 β 4 ) b , β 4 b + ( 1 β 4 ) a )

hold for all a,b>0 with ab.

In [14], the authors found the greatest values α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , α 7 , α 8 , and the least values β 1 , β 2 , β 3 , β 4 , β 5 , β 6 , β 7 , β 8 such that the double inequalities

A α 1 ( a , b ) G 1 α 1 ( a , b ) < N G A ( a , b ) < A β 1 ( a , b ) G 1 β 1 ( a , b ) , α 2 G ( a , b ) + 1 α 2 A ( a , b ) < 1 N G A ( a , b ) < β 2 G ( a , b ) + 1 β 2 A ( a , b ) , A α 3 ( a , b ) G 1 α 3 ( a , b ) < N A G ( a , b ) < A β 3 ( a , b ) G 1 β 3 ( a , b ) , α 4 G ( a , b ) + 1 α 4 A ( a , b ) < 1 N A G ( a , b ) < β 4 G ( a , b ) + 1 β 4 A ( a , b ) , Q α 5 ( a , b ) A 1 α 5 ( a , b ) < N A Q ( a , b ) < Q β 5 ( a , b ) A 1 β 5 ( a , b ) , α 6 A ( a , b ) + 1 α 6 Q ( a , b ) < 1 N A Q ( a , b ) < β 6 A ( a , b ) + 1 β 6 Q ( a , b ) , Q α 7 ( a , b ) A 1 α 7 ( a , b ) < N Q A ( a , b ) < Q β 7 ( a , b ) A 1 β 7 ( a , b ) , α 8 A ( a , b ) + 1 α 8 Q ( a , b ) < 1 N Q A ( a , b ) < β 8 A ( a , b ) + 1 β 8 Q ( a , b )

hold for all a,b>0 with ab.

The main purpose of this paper is to give the explicit formulas for the Neuman means N A H , N H A , N A C , and N C A , and to present the best possible upper and lower bounds for these means in terms of the combinations of harmonic, arithmetic, and contraharmonic means. Our main results are Theorems 1.1-1.3.

Theorem 1.1 Let a>b>0, v=(ab)/(a+b)(0,1), p(0,), q(0,π/2), r(0,log(2+ 3 )), and s(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1 v 2 , cosh(r)=sec(s)=1+ v 2 . Then we have

N A H (a,b)= 1 2 A(a,b) [ 1 + 2 p sinh ( 2 p ) ] ,
(1.4)
N H A (a,b)= 1 2 A(a,b) [ cos ( q ) + q sin ( q ) ] ,
(1.5)
N C A (a,b)= 1 2 A(a,b) [ cosh ( r ) + r sinh ( r ) ] ,
(1.6)
N A C (a,b)= 1 2 A(a,b) [ 1 + 2 s sin ( 2 s ) ] ,
(1.7)

and

H ( a , b ) < N A H ( a , b ) < N H A ( a , b ) < A ( a , b ) < N C A ( a , b ) < N A C ( a , b ) < C ( a , b ) .
(1.8)

Theorem 1.2 The double inequalities

α 1 A(a,b)+(1 α 1 )H(a,b)< N A H (a,b)< β 1 A(a,b)+(1 β 1 )H(a,b),
(1.9)
α 2 A(a,b)+(1 α 2 )H(a,b)< N H A (a,b)< β 2 A(a,b)+(1 β 2 )H(a,b),
(1.10)
α 3 C(a,b)+(1 α 3 )A(a,b)< N C A (a,b)< β 3 C(a,b)+(1 β 3 )A(a,b),
(1.11)
α 4 C(a,b)+(1 α 4 )A(a,b)< N A C (a,b)< β 4 C(a,b)+(1 β 4 )A(a,b)
(1.12)

hold for all a,b>0 with ab if and only if α 1 1/3, β 1 1/2, α 2 2/3, β 2 π/4=0.7853 , α 3 1/3, β 3 3 log(2+ 3 )/6=0.3801 , α 4 2/3, and β 4 (4 3 π9)/18=0.7901 .

Theorem 1.3 The double inequalities

α 5 H ( a , b ) + 1 α 5 A ( a , b ) < 1 N A H ( a , b ) < β 5 H ( a , b ) + 1 β 5 A ( a , b ) ,
(1.13)
α 6 H ( a , b ) + 1 α 6 A ( a , b ) < 1 N H A ( a , b ) < β 6 H ( a , b ) + 1 β 6 A ( a , b ) ,
(1.14)
α 7 A ( a , b ) + 1 α 7 C ( a , b ) < 1 N C A ( a , b ) < β 7 A ( a , b ) + 1 β 7 C ( a , b ) ,
(1.15)
α 8 A ( a , b ) + 1 α 8 C ( a , b ) < 1 N A C ( a , b ) < β 8 A ( a , b ) + 1 β 8 C ( a , b ) ,
(1.16)

hold for all a,b>0 with ab if and only if α 5 0, β 5 2/3, α 6 0, β 6 1/3, α 7 [2 3 log(2+ 3 )]/[2 3 +log(2+ 3 )]=0.4490 , β 7 2/3, α 8 (9 3 4π)/(3 3 +4π)=0.1701 , and β 8 1/3.

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 (See [[15], Theorem 1.25])

For <a<b<, let f,g:[a,b]R be continuous on [a,b], and be differentiable on (a,b), let g (x)0 on (a,b). If f (x)/ g (x) is increasing (decreasing) on (a,b), then so are

f ( x ) f ( a ) g ( x ) g ( a ) and f ( x ) f ( b ) g ( x ) g ( b ) .

If f (x)/ g (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (See [[16], Lemma 1.1])

Suppose that the power series f(x)= n = 0 a n x n and g(x)= n = 0 b n x n have the radius of convergence r>0 and a n , b n >0 for all n0. If the sequence { a n / b n } is (strictly) increasing (decreasing) for all n0, then the function f(x)/g(x) is also (strictly) increasing (decreasing) on (0,r).

Lemma 2.3 (See [[12], Theorem 4.1])

If a>b, then

N(b,a)>N(a,b).

Lemma 2.4 The function

φ 1 (t)= sinh ( 2 t ) 4 sinh ( t ) + 2 t sinh ( 2 t ) 2 sinh ( t )

is strictly increasing from (0,) onto (2/3,1).

Proof Making use of power series expansion we get

φ 1 (t)= n = 1 2 2 n + 1 4 ( 2 n + 1 ) ! t 2 n + 1 n = 1 2 2 n + 1 2 ( 2 n + 1 ) ! t 2 n + 1 = n = 0 2 2 n + 3 4 ( 2 n + 3 ) ! t 2 n n = 0 2 2 n + 3 2 ( 2 n + 3 ) ! t 2 n .
(2.1)

Let

a n = 2 2 n + 3 4 ( 2 n + 3 ) ! , b n = 2 2 n + 3 2 ( 2 n + 3 ) ! .
(2.2)

Then

a n >0, b n >0,
(2.3)

and a n / b n =11/( 2 2 n + 2 1) is strictly increasing for all n0.

Note that

φ 1 ( 0 + ) = a 0 b 0 = 2 3 , φ 1 ()= lim n a n b n =1.
(2.4)

Therefore, Lemma 2.4 follows easily from Lemma 2.2 and (2.1)-(2.4) together with the monotonicity of the sequence { a n / b n }. □

Lemma 2.5 The function

φ 2 (t)= 2 t sin ( 2 t ) sin t ( 1 cos t )

is strictly increasing from (0,π/2) onto (8/3,π).

Proof Let f 1 (t)=2tsin(2t) and g 1 (t)=sint(1cost). Then simple computations lead to

φ 2 (t)= f 1 ( t ) f 1 ( 0 ) g 1 ( t ) g 1 ( 0 )
(2.5)

and f 1 (t)/ g 1 (t)=4[11/(2+1/cost)] is strictly increasing on (0,π/2).

Note that

φ 2 ( 0 + ) = lim t 0 + f 1 ( t ) g 1 ( t ) = 8 3 , φ 2 (π/2)=π.
(2.6)

Therefore, Lemma 2.5 follows from Lemma 2.1, (2.5), (2.6), and the monotonicity of f 1 (t)/ g 1 (t). □

Lemma 2.6 The function

φ 3 (t)= sinh ( t ) cosh ( t ) t [ sinh ( t ) cosh ( t ) + t ] ( cosh ( t ) 1 )

is strictly decreasing from (0,) onto (0,2/3).

Proof Simple computations lead to

φ 3 ( t ) = 2 sinh ( 2 t ) 4 t sinh ( 3 t ) + 4 t cosh ( t ) + sinh ( t ) 2 sinh ( 2 t ) 4 t = n = 0 2 2 n + 4 ( 2 n + 3 ) ! t 2 n n = 0 3 2 n + 3 2 2 n + 4 + 8 n + 13 ( 2 n + 3 ) ! t 2 n .
(2.7)

Let

a n = 2 2 n + 4 ( 2 n + 3 ) ! , b n = 3 2 n + 3 2 2 n + 4 + 8 n + 13 ( 2 n + 3 ) ! .
(2.8)

Then

a n >0, b n >0,
(2.9)

and

a n + 1 b n + 1 a n b n = 2 2 n + 4 ( 5 × 3 2 n + 3 24 n 31 ) ( 3 2 n + 5 2 2 n + 6 + 8 n + 21 ) ( 3 2 n + 3 2 2 n + 4 + 8 n + 13 ) <0
(2.10)

for all n0.

Note that

φ 3 ( 0 + ) = a 0 b 0 = 2 3 , φ 3 ()= lim n a n b n =0.
(2.11)

Therefore, Lemma 2.6 follows easily from (2.7)-(2.11) and Lemma 2.2. □

Lemma 2.7 The function

f(t)=9cost+ t sin t

is strictly decreasing on the interval (0,π/2).

Proof Let f 2 (t)=9sintcost+t and g 2 (t)=sint. Then simple computations lead to

f ( t ) = f 2 ( t ) f 2 ( 0 ) g 2 ( t ) g 2 ( 0 ) , f 2 ( t ) g 2 ( t ) = 18 cos 2 t 8 cos t ,
(2.12)

and

[ f 2 ( t ) g 2 ( t ) ] = 2 sin t ( 9 cos 2 t + 4 ) cos 2 t <0
(2.13)

for t(0,π/2).

Therefore, Lemma 2.7 follows easily from (2.12) and (2.13) together with Lemma 2.1. □

Lemma 2.8 The function

φ 4 (t)= sin t cos t t ( t + sin t cos t ) ( 1 cos t )

is strictly decreasing from (0,π/2) onto (1,2/3).

Proof Let f 3 (t)=sintcostt and g 3 (t)=(t+sintcost)(1cost). Then simple computations lead to

φ 4 (t)= f 3 ( t ) g 3 ( t ) = f 3 ( t ) f 3 ( 0 ) g 3 ( t ) g 3 ( 0 ) ,
(2.14)
f 3 ( t ) g 3 ( t ) = f 3 ( t ) f 3 ( 0 ) g 3 ( t ) g 3 ( 0 ) ,
(2.15)

and

f 3 ( t ) g 3 ( t ) = 4 4 ( 9 cos t + t sin t ) .
(2.16)

Note that

φ 4 ( 0 + ) = lim t 0 + f 3 ( t ) g 3 ( t ) = 2 3 , φ 4 ( π 2 ) =1.
(2.17)

Therefore, Lemma 2.8 follows from Lemma 2.1 and Lemma 2.7 together with (2.14)-(2.17). □

3 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1 It follows from (1.1)-(1.3) as we clearly see that

N A H ( a , b ) = 1 2 [ A ( a , b ) + H 2 ( a , b ) S A H ( a , b ) ] = 1 2 A ( a , b ) [ 1 + ( 1 v 2 ) 2 p tanh ( p ) ] = 1 2 A ( a , b ) [ 1 + p tanh ( p ) cosh 2 ( p ) ] = 1 2 A ( a , b ) [ 1 + 2 p sinh ( 2 p ) ] , N H A ( a , b ) = 1 2 [ H ( a , b ) + A 2 ( a , b ) S H A ( a , b ) ] = 1 2 A ( a , b ) [ ( 1 v 2 ) + q sin q ] = 1 2 A ( a , b ) [ cos q + q sin q ] , N C A ( a , b ) = 1 2 [ C ( a , b ) + A 2 ( a , b ) S C A ( a , b ) ] = 1 2 A ( a , b ) [ ( 1 + v 2 ) + r sinh ( r ) ] = 1 2 A ( a , b ) [ cosh ( r ) + r sinh ( r ) ] , N A C ( a , b ) = 1 2 [ A ( a , b ) + C 2 ( a , b ) S A C ( a , b ) ] = 1 2 A ( a , b ) [ 1 + ( 1 + v 2 ) 2 s tan ( s ) ] = 1 2 A ( a , b ) [ 1 + s tan ( s ) cos 2 s ] = 1 2 A ( a , b ) [ 1 + 2 s sin ( 2 s ) ] .

Inequalities (1.8) follow easily from H(a,b)<A(a,b)<C(a,b) and Lemma 2.3 together with the fact that N K L (a,b) is a mean of K(a,b) and L(a,b) for K(a,b),L(a,b){H(a,b),A(a,b),C(a,b)}. □

Proof of Theorem 1.2 Without loss of generality, we assume that a>b. Let v=(ab)/(a+b)(0,1), p(0,), q(0,π/2), r(0,log(2+ 3 )), and s(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1 v 2 , cosh(r)=sec(s)=1+ v 2 . Then from (1.4)-(1.7) we have

N A H ( a , b ) H ( a , b ) A ( a , b ) H ( a , b ) = [ 1 + 2 p / sinh ( 2 p ) ] / 2 ( 1 v 2 ) v 2 = [ 1 + 2 p / sinh ( 2 p ) ] / 2 1 / cosh ( p ) 1 1 / cosh ( p ) = φ 1 ( p ) ,
(3.1)
N H A ( a , b ) H ( a , b ) A ( a , b ) H ( a , b ) = [ cos q + q / sin q ] / 2 ( 1 v 2 ) v 2 = [ cos q + q / sin q ] / 2 cos q 1 cos q = 1 4 φ 2 ( q ) ,
(3.2)
N C A ( a , b ) A ( a , b ) C ( a , b ) A ( a , b ) = [ cosh ( r ) + r / sinh ( r ) ] / 2 1 v 2 = [ cosh ( r ) + r / sinh ( r ) ] / 2 1 cosh ( r ) 1 = 1 2 φ 1 ( r ) ,
(3.3)
N A C ( a , b ) A ( a , b ) C ( a , b ) A ( a , b ) = [ 1 + 2 s / sin ( 2 s ) ] / 2 1 v 2 = [ 1 + 2 s / sin ( 2 s ) ] / 2 1 sec ( s ) 1 = 1 4 φ 2 ( s ) ,
(3.4)

where the functions φ 1 and φ 2 are defined as in Lemmas 2.4 and 2.5, respectively.

Note that

φ 1 [ log ( 2 + 3 ) ] = 3 log(2+ 3 )/6
(3.5)

and

φ 2 ( π 3 ) = 8 3 π 18 9 .
(3.6)

Therefore, inequality (1.9) holds for all a,b>0 with ab if and only if α 1 1/3 and β 1 1/2 follows from (3.1) and Lemma 2.4, inequality (1.10) holds for all a,b>0 with ab if and only if α 2 2/3 and β 2 π/4 follows from (3.2) and Lemma 2.5, inequality (1.11) holds for all a,b>0 with ab if and only if α 3 1/3 and β 3 3 log(2+ 3 )/6 follows from (3.3) and (3.5) together with Lemma 2.4, and inequality (1.12) holds for all a,b>0 with ab if and only if α 4 2/3 and β 4 (4 3 π9)/18 follows from (3.4) and (3.6) together with Lemma 2.5. □

Proof of Theorem 1.3 Without loss of generality, we assume that a>b. Let v=(ab)/(a+b)(0,1), p(0,), q(0,π/2), r(0,log(2+ 3 )), and s(0,π/3) be the parameters such that 1/cosh(p)=cos(q)=1 v 2 , cosh(r)=sec(s)=1+ v 2 . Then from (1.4)-(1.7) we have

1 / N A H ( a , b ) 1 / A ( a , b ) 1 / H ( a , b ) 1 / A ( a , b ) = 2 1 + 2 p / sinh ( 2 p ) 1 1 1 v 2 1 = 2 sinh ( 2 p ) 2 p + sinh ( 2 p ) 1 cosh ( p ) 1 = φ 3 (p),
(3.7)
1 / N H A ( a , b ) 1 / A ( a , b ) 1 / H ( a , b ) 1 / A ( a , b ) = 2 cos ( q ) + q / sin ( q ) 1 1 1 v 2 1 = 2 sin ( q ) sin ( q ) cos ( q ) q sin ( q ) cos ( q ) + q 1 cos ( q ) cos ( q ) =1+ φ 4 (q),
(3.8)
1 / N C A ( a , b ) 1 / C ( a , b ) 1 / A ( a , b ) 1 / C ( a , b ) = 2 cosh ( r ) + r / sinh ( r ) 1 1 + v 2 1 1 1 + v 2 = φ 3 (r),
(3.9)

and

1 / N A C ( a , b ) 1 / C ( a , b ) 1 / A ( a , b ) 1 / C ( a , b ) =1+ φ 4 (s),
(3.10)

where the functions φ 3 and φ 4 are defined as in Lemmas 2.6 and 2.8, respectively.

Note that

φ 3 [ log ( 2 + 3 ) ] = 2 3 log ( 2 + 3 ) 2 3 + log ( 2 + 3 )
(3.11)

and

φ 4 ( π 3 ) = 8 π 6 3 4 π + 3 3 .
(3.12)

Therefore, Theorem 1.3 follows easily from (3.7)-(3.12) together with Lemmas 2.6 and 2.8. □