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Abstract
In this paper, we give the explicit formulas for the Neuman means NAH , NHA, NAC , and
NCA , and present the best possible upper and lower bounds for these means in terms
of the combinations of harmonic mean H, arithmetic mean A, and contraharmonic
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1 Introduction
Let a,b, c ≥  with ab + ac + bc �= . Then the symmetric integral RF (a,b, c) [] of the first
kind is defined as

RF (a,b, c) =



∫ ∞



[
(t + a)(t + b)(t + c)

]–/ dt.

The degenerate case ofRF , denoted byRC , plays an important role in the theory of special
functions [, ], which is given by

RC(a,b) = RF (a,b,b).

For a,b >  with a �= b, the Schwab-Borchardt mean SB(a,b) [–] of a and b is given by

SB(a,b) =

⎧⎨
⎩

√
b–a

cos– (a/b) , a < b,
√
a–b

cosh– (a/b) , a > b,

where cos–(x) and cosh–(x) = log(x +
√
x – ) are the inverse cosine and inverse hyper-

bolic cosine functions, respectively.
Carlson [] (see also [, (.)]) proved that

SB(a,b) =
[
RC

(
a,b

)]–.
Recently, the Schwab-Borchardtmean has been the subject of intensive research. In par-

ticular, many remarkable inequalities for the Schwab-Borchardt mean and its generated
means can be found in the literature [–, –].
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Let a > b > , v = (a – b)/(a + b) ∈ (, ), p ∈ (,∞), q ∈ (,π/), r ∈ (, log( +
√
)),

and s ∈ (,π/) be the parameters such that / cosh(p) = cos(q) =  – v, cosh(r) = sec(s) =
 + v, H(a,b) = ab/(a + b), G(a,b) =

√
ab, A(a,b) = (a + b)/, Q(a,b) =

√
(a + b)/,

and C(a,b) = (a + b)/(a + b) be, respectively, the harmonic, geometric, arithmetic,
quadratic, and contraharmonic means of a and b, SAH (a,b) = SB[A(a,b),H(a,b)],
SHA(a,b) = SB[H(a,b),A(a,b)], SAC(a,b) = SB[A(a,b),C(a,b)], SCA(a,b) = SB[C(a,b),
A(a,b)]. Then Neuman [] gave the explicit formulas

SAH (a,b) = A(a,b)
tanh(p)

p
, SHA(a,b) = A(a,b)

sinq
q

, (.)

SCA(a,b) = A(a,b)
sinh(r)

r
, SAC(a,b) = A(a,b)

tan s
s

. (.)

Very recently, Neuman [] found a new mean N(a,b) derived from the Schwab-
Borchardt mean as follows:

N(a,b) =



[
a +

b

SB(a,b)

]
. (.)

LetNAH(a,b) =N[A(a,b),H(a,b)],NHA(a,b) =N[H(a,b),A(a,b)],NAG(a,b) =N[A(a,b),
G(a,b)], NGA(a,b) = N[G(a,b),A(a,b)], NAC(a,b) = N[A(a,b),C(a,b)], NCA(a,b) =
N[C(a,b),A(a,b)], NAQ(a,b) = N[A(a,b),Q(a,b)], and NQA(a,b) = N[Q(a,b),A(a,b)] be
the Neuman means. Then Neuman [] proved that

G(a,b) <NAG(a,b) <NGA(a,b) < A(a,b) <NQA(a,b) <NAQ(a,b) <Q(a,b)

for all a,b >  with a �= b, and the double inequalities

αA(a,b) + ( – α)G(a,b) <NGA(a,b) < βA(a,b) + ( – β)G(a,b),

αQ(a,b) + ( – α)A(a,b) <NAQ(a,b) < βQ(a,b) + ( – β)A(a,b),

αA(a,b) + ( – α)G(a,b) <NAG(a,b) < βA(a,b) + ( – β)G(a,b),

αQ(a,b) + ( – α)A(a,b) <NQA(a,b) < βQ(a,b) + ( – β)A(a,b)

hold for all a,b >  with a �= b if and only if α ≤ /, β ≥ π/, α ≤ /, β ≥
(π – )/[(

√
 – )] = . . . . , α ≤ /, β ≥ /, α ≤ /, and β ≥ [log( +

√
) +√

 – ]/[(
√
 – )] = . . . . .

Zhang et al. [] presented the best possible parameters α,α,β,β ∈ [, /] and
α,α,β,β ∈ [/, ] such that the double inequalities

G
(
αa + ( – α)b,αb + ( – α)a

)
<NAG(a,b) <G

(
βa + ( – β)b,βb + ( – β)a

)
,

G
(
αa + ( – α)b,αb + ( – α)a

)
<NGA(a,b) <G

(
βa + ( – β)b,βb + ( – β)a

)
,

Q
(
αa + ( – α)b,αb + ( – α)a

)
<NQA(a,b) <Q

(
βa + ( – β)b,βb + ( – β)a

)
,

Q
(
αa + ( – α)b,αb + ( – α)a

)
<NAQ(a,b) <Q

(
βa + ( – β)b,βb + ( – β)a

)

hold for all a,b >  with a �= b.
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In [], the authors found the greatest values α, α, α, α, α, α, α, α, and the least
values β, β, β, β, β, β, β, β such that the double inequalities

Aα (a,b)G–α (a,b) <NGA(a,b) < Aβ (a,b)G–β (a,b),

α

G(a,b)
+

 – α

A(a,b)
<


NGA(a,b)

<
β

G(a,b)
+

 – β

A(a,b)
,

Aα (a,b)G–α (a,b) <NAG(a,b) < Aβ (a,b)G–β (a,b),

α

G(a,b)
+

 – α

A(a,b)
<


NAG(a,b)

<
β

G(a,b)
+

 – β

A(a,b)
,

Qα (a,b)A–α (a,b) <NAQ(a,b) <Qβ (a,b)A–β (a,b),

α

A(a,b)
+

 – α

Q(a,b)
<


NAQ(a,b)

<
β

A(a,b)
+

 – β

Q(a,b)
,

Qα (a,b)A–α (a,b) <NQA(a,b) <Qβ (a,b)A–β (a,b),

α

A(a,b)
+

 – α

Q(a,b)
<


NQA(a,b)

<
β

A(a,b)
+

 – β

Q(a,b)

hold for all a,b >  with a �= b.
The main purpose of this paper is to give the explicit formulas for the Neuman means

NAH , NHA, NAC , and NCA, and to present the best possible upper and lower bounds for
these means in terms of the combinations of harmonic, arithmetic, and contraharmonic
means. Our main results are Theorems .-..

Theorem . Let a > b > , v = (a – b)/(a + b) ∈ (, ), p ∈ (,∞), q ∈ (,π/), r ∈
(, log( +

√
)), and s ∈ (,π/) be the parameters such that / cosh(p) = cos(q) =  – v,

cosh(r) = sec(s) =  + v. Then we have

NAH (a,b) =


A(a,b)

[
 +

p
sinh(p)

]
, (.)

NHA(a,b) =


A(a,b)

[
cos(q) +

q
sin(q)

]
, (.)

NCA(a,b) =


A(a,b)

[
cosh(r) +

r
sinh(r)

]
, (.)

NAC(a,b) =


A(a,b)

[
 +

s
sin(s)

]
, (.)

and

H(a,b) <NAH(a,b) <NHA(a,b) < A(a,b)

<NCA(a,b) <NAC(a,b) < C(a,b). (.)

Theorem . The double inequalities

αA(a,b) + ( – α)H(a,b) <NAH (a,b) < βA(a,b) + ( – β)H(a,b), (.)

αA(a,b) + ( – α)H(a,b) <NHA(a,b) < βA(a,b) + ( – β)H(a,b), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/370
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αC(a,b) + ( – α)A(a,b) <NCA(a,b) < βC(a,b) + ( – β)A(a,b), (.)

αC(a,b) + ( – α)A(a,b) <NAC(a,b) < βC(a,b) + ( – β)A(a,b) (.)

hold for all a,b >  with a �= b if and only if α ≤ /, β ≥ /, α ≤ /, β ≥
π/ = . . . . , α ≤ /, β ≥ √

 log( +
√
)/ = . . . . , α ≤ /, and β ≥

(
√
π – )/ = . . . . .

Theorem . The double inequalities

α

H(a,b)
+

 – α

A(a,b)
<


NAH (a,b)

<
β

H(a,b)
+

 – β

A(a,b)
, (.)

α

H(a,b)
+

 – α

A(a,b)
<


NHA(a,b)

<
β

H(a,b)
+

 – β

A(a,b)
, (.)

α

A(a,b)
+

 – α

C(a,b)
<


NCA(a,b)

<
β

A(a,b)
+

 – β

C(a,b)
, (.)

α

A(a,b)
+

 – α

C(a,b)
<


NAC(a,b)

<
β

A(a,b)
+

 – β

C(a,b)
, (.)

hold for all a,b >  with a �= b if and only if α ≤ , β ≥ /, α ≤ , β ≥ /, α ≤ [
√
–

log( +
√
)]/[

√
 + log( +

√
)] = . . . . , β ≥ /, α ≤ (

√
 – π )/(

√
 + π ) =

. . . . , and β ≥ /.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

Lemma . (See [, Theorem .]) For –∞ < a < b < ∞, let f , g : [a,b] → R be continu-
ous on [a,b], and be differentiable on (a,b), let g ′(x) �=  on (a,b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a,b), then so are

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . (See [, Lemma .]) Suppose that the power series f (x) =
∑∞

n= anxn and
g(x) =

∑∞
n= bnxn have the radius of convergence r >  and an,bn >  for all n ≥ . If the

sequence {an/bn} is (strictly) increasing (decreasing) for all n ≥ , then the function f (x)/g(x)
is also (strictly) increasing (decreasing) on (, r).

Lemma . (See [, Theorem .]) If a > b, then

N(b,a) >N(a,b).

Lemma . The function

ϕ(t) =
sinh(t) –  sinh(t) + t
sinh(t) –  sinh(t)

is strictly increasing from (,∞) onto (/, ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/370
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Proof Making use of power series expansion we get

ϕ(t) =
∑∞

n=
n+–
(n+)! t

n+

∑∞
n=

n+–
(n+)! tn+

=
∑∞

n=
n+–
(n+)! t

n

∑∞
n=

n+–
(n+)! tn

. (.)

Let

an =
n+ – 
(n + )!

, bn =
n+ – 
(n + )!

. (.)

Then

an > , bn > , (.)

and an/bn =  – /(n+ – ) is strictly increasing for all n≥ .
Note that

ϕ
(
+

)
=
a
b

=


, ϕ(∞) = lim

n→∞
an
bn

= . (.)

Therefore, Lemma . follows easily from Lemma . and (.)-(.) together with the
monotonicity of the sequence {an/bn}. �

Lemma . The function

ϕ(t) =
t – sin(t)

sin t( – cos t)

is strictly increasing from (,π/) onto (/,π ).

Proof Let f(t) = t – sin(t) and g(t) = sin t( – cos t). Then simple computations lead to

ϕ(t) =
f(t) – f()
g(t) – g()

(.)

and f ′
 (t)/g ′

(t) = [ – /( + / cos t)] is strictly increasing on (,π/).
Note that

ϕ
(
+

)
= lim

t→+
f ′
 (t)
g ′
(t)

=


, ϕ(π/) = π . (.)

Therefore, Lemma . follows from Lemma ., (.), (.), and the monotonicity of
f ′
 (t)/g ′

(t). �

Lemma . The function

ϕ(t) =
sinh(t) cosh(t) – t

[sinh(t) cosh(t) + t](cosh(t) – )

is strictly decreasing from (,∞) onto (, /).

http://www.journalofinequalitiesandapplications.com/content/2014/1/370
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Proof Simple computations lead to

ϕ(t) =
 sinh(t) – t

sinh(t) + t cosh(t) + sinh(t) –  sinh(t) – t

=
∑∞

n=
n+
(n+)! t

n

∑∞
n=

n+–n++n+
(n+)! tn

. (.)

Let

an =
n+

(n + )!
, bn =

n+ – n+ + n + 
(n + )!

. (.)

Then

an > , bn > , (.)

and

an+
bn+

–
an
bn

= –
n+(× n+ – n – )

(n+ – n+ + n + )(n+ – n+ + n + )
<  (.)

for all n ≥ .
Note that

ϕ
(
+

)
=
a
b

=


, ϕ(∞) = lim

n→∞
an
bn

= . (.)

Therefore, Lemma . follows easily from (.)-(.) and Lemma .. �

Lemma . The function

f (t) =  cos t +
t

sin t

is strictly decreasing on the interval (,π/).

Proof Let f(t) =  sin t cos t + t and g(t) = sin t. Then simple computations lead to

f (t) =
f(t) – f()
g(t) – g()

,

f ′
(t)
g ′
(t)

=
 cos t – 

cos t
,

(.)

and
[
f ′
(t)
g ′
(t)

]′
= –

 sin t( cos t + )
cos t

<  (.)

for t ∈ (,π/).
Therefore, Lemma . follows easily from (.) and (.) together with Lemma ..

�
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Lemma . The function

ϕ(t) =
sin t cos t – t

(t + sin t cos t)( – cos t)

is strictly decreasing from (,π/) onto (–,–/).

Proof Let f(t) = sin t cos t – t and g(t) = (t + sin t cos t)( – cos t). Then simple computa-
tions lead to

ϕ(t) =
f(t)
g(t)

=
f(t) – f()
g(t) – g()

, (.)

f ′
(t)
g ′
(t)

=
f ′
(t) – f ′

()
g ′
(t) – g ′

()
, (.)

and

f ′′
 (t)
g ′′
 (t)

=


 – ( cos t + t
sin t )

. (.)

Note that

ϕ
(
+

)
= lim

t→+
f ′′
 (t)
g ′′
 (t)

= –


, ϕ

(
π



)
= –. (.)

Therefore, Lemma . follows from Lemma . and Lemma . together with (.)-
(.). �

3 Proofs of Theorems 1.1-1.3

Proof of Theorem . It follows from (.)-(.) as we clearly see that

NAH (a,b) =



[
A(a,b) +

H(a,b)
SAH (a,b)

]
=


A(a,b)

[
 +

(
 – v

) p
tanh(p)

]

=


A(a,b)

[
 +

p
tanh(p) cosh(p)

]
=


A(a,b)

[
 +

p
sinh(p)

]
,

NHA(a,b) =



[
H(a,b) +

A(a,b)
SHA(a,b)

]
=


A(a,b)

[(
 – v

)
+

q
sinq

]

=


A(a,b)

[
cosq +

q
sinq

]
,

NCA(a,b) =



[
C(a,b) +

A(a,b)
SCA(a,b)

]
=


A(a,b)

[(
 + v

)
+

r
sinh(r)

]

=


A(a,b)

[
cosh(r) +

r
sinh(r)

]
,

NAC(a,b) =



[
A(a,b) +

C(a,b)
SAC(a,b)

]
=


A(a,b)

[
 +

(
 + v

) s
tan(s)

]

=


A(a,b)

[
 +

s
tan(s) cos s

]
=


A(a,b)

[
 +

s
sin(s)

]
.
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Inequalities (.) follow easily from H(a,b) < A(a,b) < C(a,b) and Lemma . to-
gether with the fact that NKL(a,b) is a mean of K (a,b) and L(a,b) for K(a,b),L(a,b) ∈
{H(a,b),A(a,b),C(a,b)}. �

Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a – b)/
(a + b) ∈ (, ), p ∈ (,∞), q ∈ (,π/), r ∈ (, log( +

√
)), and s ∈ (,π/) be the param-

eters such that / cosh(p) = cos(q) =  – v, cosh(r) = sec(s) =  + v. Then from (.)-(.)
we have

NAH(a,b) –H(a,b)
A(a,b) –H(a,b)

=
[ + p/sinh(p)]/ – ( – v)

v

=
[ + p/sinh(p)]/ – / cosh(p)

 – /cosh(p)
= ϕ(p), (.)

NHA(a,b) –H(a,b)
A(a,b) –H(a,b)

=
[cosq + q/ sinq]/ – ( – v)

v

=
[cosq + q/ sinq]/ – cosq

 – cosq
=



ϕ(q), (.)

NCA(a,b) –A(a,b)
C(a,b) –A(a,b)

=
[cosh(r) + r/ sinh(r)]/ – 

v

=
[cosh(r) + r/ sinh(r)]/ – 

cosh(r) – 
=


ϕ(r), (.)

NAC(a,b) –A(a,b)
C(a,b) –A(a,b)

=
[ + s/ sin(s)]/ – 

v

=
[ + s/ sin(s)]/ – 

sec(s) – 
=



ϕ(s), (.)

where the functions ϕ and ϕ are defined as in Lemmas . and ., respectively.
Note that

ϕ
[
log( +

√
)

]
=

√
 log( +

√
)/ (.)

and

ϕ

(
π



)
=

√
π – 


. (.)

Therefore, inequality (.) holds for all a,b >  with a �= b if and only if α ≤ / and
β ≥ / follows from (.) and Lemma ., inequality (.) holds for all a,b >  with
a �= b if and only if α ≤ / and β ≥ π/ follows from (.) and Lemma ., inequality
(.) holds for all a,b >  with a �= b if and only if α ≤ / and β ≥ √

 log( +
√
)/

follows from (.) and (.) together with Lemma ., and inequality (.) holds for all
a,b >  with a �= b if and only if α ≤ / and β ≥ (

√
π – )/ follows from (.) and

(.) together with Lemma .. �

Proof of Theorem . Without loss of generality, we assume that a > b. Let v = (a – b)/
(a + b) ∈ (, ), p ∈ (,∞), q ∈ (,π/), r ∈ (, log( +

√
)), and s ∈ (,π/) be the param-

eters such that / cosh(p) = cos(q) =  – v, cosh(r) = sec(s) =  + v. Then from (.)-(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/370
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we have

/NAH (a,b) – /A(a,b)
/H(a,b) – /A(a,b)

=


+p/sinh(p) – 


–v – 
=

 sinh(p)
p+sinh(p) – 
cosh(p) – 

= ϕ(p), (.)

/NHA(a,b) – /A(a,b)
/H(a,b) – /A(a,b)

=


cos(q)+q/ sin(q) – 


–v – 
=

 sin(q)–sin(q) cos(q)–q
sin(q) cos(q)+q

–cos(q)
cos(q)

=  + ϕ(q), (.)

/NCA(a,b) – /C(a,b)
/A(a,b) – /C(a,b)

=


cosh(r)+r/ sinh(r) –


+v

 – 
+v

= ϕ(r), (.)

and

/NAC(a,b) – /C(a,b)
/A(a,b) – /C(a,b)

=  + ϕ(s), (.)

where the functions ϕ and ϕ are defined as in Lemmas . and ., respectively.
Note that

ϕ
[
log( +

√
)

]
=

√
 – log( +

√
)


√
 + log( +

√
)

(.)

and

ϕ

(
π



)
= –

π – 
√


π + 
√

. (.)

Therefore, Theorem . follows easily from (.)-(.) together with Lemmas .
and .. �
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